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Abstract. Crystal size distribution (CSD) is an essential criterion for determining the production of 

high-quality crystals since it influences the efficiency of the crystallization process. Producing 

specified CSD in the crystallization process represents a main challenge as it depends on 

temperature control, which indirectly regulates the solution’s concentration and affects the crystal’s 

evolution. Different temperature profiles may influence the distribution of crystal products, and a 

suitable optimization algorithm is required to produce an optimum temperature trajectory that 

produces the desired CSD. Thus, this study aims to maximize the CSD of the grown seed crystals 

while minimizing the nucleus-grown crystals by employing the best optimization algorithm for the 

potash alum crystallization process. The crystallization process was developed and simulated in 

Matlab software using a potash alum in the water system. Four optimization algorithms were 

proposed with different objective functions, such as maximizing mean crystal size (I), minimizing 

coefficient of variation (II), minimizing nucleus-grown crystals (III), and maximizing CSD (IV). Based 

on the simulation results, optimization IV, which maximizes CSD, performs best with a large mean 

crystal size of 490 µm. Furthermore, the number of fine crystals was among the lowest at a volume 

distribution of 0.00071 m3/m compared to the linear profile at 0.00191 m3/m. Optimization IV 

employs a dissolution strategy, which manipulates two quality specifications in one algorithm (size 

of crystals and number of fines), which is considered the best optimal cooling profile for seeded 

batch crystallization by maximizing CSD and minimizing the generation of nucleus-grown crystals. 
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INTRODUCTION 

 

In a batch-cooling crystallization process, 

the quality of crystal products ensures the 

efficient production of crystals (Walla et al., 

2023). Efficient production ensures smooth 

operation in the downstream processes such 

as filtering, washing, drying, storing, and 

transporting the crystals. One of the critical 

product specifications that should be met to 

achieve process efficiency is crystal size 

distribution (CSD). CSD is a crucial product 

specification that directly affects the 

operation during downstream processes 

(Adnan and Samad, 2022; Zong et al., 2023). 

Achieving an acceptable CSD range, such as 

a larger mean size with a reduced number of 

fine crystals, is recommended to avoid further 
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difficulties in the latter processing line and 

decrease process efficiency. For example, 

large-size crystals with a minimum number of 

fines are easy to separate for further 

processing during the filtration process. In 

contrast, small-sized crystals with fines will 

add more complexity and additional time to 

the crystal purification process. Therefore, it 

is essential to be attentive to the quality 

specifications of the crystals to ensure the 

required standards are met (Zheng et al., 

2022). 

Generally, CSD is achieved by controlling 

the temperature of the solution. This 

indirectly regulates the concentration, which 

means supersaturation-dependent 

phenomena such as nucleation and crystal 

growth are altered, too. This action 

contributes to crystal properties such as 

purity, morphology, and CSD (Lee et al., 2019; 

Samad et al., 2010). Thus, selecting a proper 

temperature profile that can achieve the 

desired crystal product is important. 

Conventional cooling temperature profiles, 

which are linear and cubic cooling curves, are 

widely used for crystallization (Zhang et al., 

2018). This is because the linear cooling 

profile, for example, is expected to produce 

grown seed crystals whose CSD is superior to 

the natural cooling profile but a bit inferior to 

the cubic cooling curve. However, both 

cooling curves will generate many fine 

crystals at the end of the crystallization 

process (Hojjati and Rohani, 2005; Zhang et 

al., 2018). These fine crystals are not desirable 

in the crystallization process as obtaining 

significant fine crystals may cause yield loss 

(Agrawal and Paterson, 2015) and long 

operational time, especially in filtration and 

drying processes (Trampuž et al., 2021). 

Alternatively, to avoid these issues and thus 

achieve a better CSD profile with fewer fine 

crystals, an optimization algorithm may help 

reduce the number of fine crystals. An 

optimization algorithm that comprises a 

specific control objective could be utilized for 

a given crystallization system.  

Furthermore, an optimization algorithm 

was used decades ago to achieve optimal 

cooling policy regarding specified production 

targets related to CSD (Nagy et al., 2019). The 

objective function can be set to maximize 

crystal size with subjected optimization limits 

or constraints such as total batch time, seed 

loading ratio, and temperature. The 

commonly used objective functions related to 

CSD available in the literature are the 

maximization of mean crystal size (Sanzida 

and Nagy, 2019), minimization of coefficients 

of variation (CV) (Ashraf and Rao, 2022; 

Hemalatha et al., 2018), minimization of 

nucleus-grown crystals (fine crystals) (Ashraf 

and Rao, 2022: Seki and Su, 2015) and 

maximization of CSD (Nagy et al., 2019: 

Trampuž et al., 2021). However, no versatile 

optimization algorithm warrants suitability 

for all crystallization systems. Each 

optimization algorithm may only produce an 

optimal cooling profile for achieving the pre-

set objective function in the given 

crystallization system and may not be 

effective in other systems. Several algorithms 

may need to be performed to evaluate the 

suitability and performance of the output to 

apply any chosen optimization algorithm to a 

new crystallization system. The underlying 

principles used in the first three common 

optimization algorithms are increasing crystal 

size (maximation of mean crystal size), 

improving the radical of crystals in each area 

against particle size (minimization of CV), and 

enhancing its nucleated-to-seed ratio 

(minimization of fine crystals), respectively. 

These optimizations are all a direct 

computation to achieve preferred 

characteristics of the crystalline products at 
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the end of the batch process. For the last 

common optimization algorithm 

(maximization of CSD), the dissolution 

strategy, which, on the other hand, 

manipulates the ramping of temperature as a 

distribution shaping tool to achieve the 

desired quality for an optimal crystallization 

system. No direct computation is used in this 

algorithm; instead, manipulation of the 

crystallization mechanism (dissolution). 

Moreover, dissolution strategy is the recent 

interest in the literature where it can be used 

to thwart the impacts of secondary 

nucleation that reduce the efficiency of the 

process by in situ fines removal (Nagy et al., 

2019: Szilágyi, 2022). The proposed optimal 

temperature profile, capable of obtaining 

large-sized crystals and reduced fine crystals 

for seeded batch crystallization via potash 

alum as a studied material, is the novelty of 

this paper. 

Therefore, this paper aims to implement 

an optimal temperature profile using a 

dissolution optimization algorithm by 

maximizing the CSD of the grown seed 

crystals and minimizing the nucleus-grown 

crystals for the potash alum crystallization 

process. Matlab software develops the 

mathematical model for the seeded batch 

crystallization process. The simulation of the 

crystallization process using potash alum in 

the water system is adapted from (Aamir, 

2010) and is selected arbitrarily for illustration 

purposes. Then, three other optimization 

algorithms with the objective function of 

maximizing mean crystal size, minimizing CV, 

and minimizing nucleus-grown crystals are 

employed against the dissolution algorithm. 

These optimizations are chosen to provide a 

variety of cooling profiles for potash alum 

adapted from the commonly used 

optimization algorithms in literature for 

analysis purposes. The performance of each 

generated temperature profile from the 

solved optimization algorithm in terms of 

CSD is further assessed against linear cooling 

policy to propose the best optimization for 

the potash alum’s seeded batch 

crystallization process. 

 

METHODOLOGY  

 

Mathematical Modelling  

A mathematical model was developed in 

Matlab for one-dimensional and size-

dependent potash alum in a water system by 

using PBE, as shown in Eq. (1), to represent 

the real process. The assumptions for the 

process were one-dimensional size-

dependent growth, the seed being added to 

the solution to start the crystallization 

process, the solution being well-mixed in a 

batch-jacketed crystallizer, and secondary 

nucleation, crystal growth, and dissolution 

were the crystallization phenomena 

considered. The partial differential equation 

on the left side represents the population 

density of n concerning time, t, and the 

growth of crystals relating to particle size, L, 

respectively. The birth of nuclei versus time, 

Bnuc, was shown on the right-hand side of the 

equation, while the agglomeration and 

breakage phenomena were not considered. 

 

𝜕𝑛(𝐿, 𝑡)

𝜕𝑡
+ 

𝜕𝑛(𝐿, 𝑡)𝐺(𝐿, 𝐶, 𝑇)

𝜕𝐿
= 𝐵𝑛𝑢𝑐 (1) 

  

This PBE was then solved numerically 

using the method of classes shown in Eqs. 

(2)– (4) by transforming the equation into 

ordinary differential equations (ODEs) using 

the ‘ode15s’ solver in Matlab. For the case of 

dissolution where relative supersaturation, 

S<0, the growth term, Gx, was replaced by the 

dissolution term, Dx.  
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𝑑𝑁1

𝑑𝑡
+ 

𝐺𝑥1

2∆𝐶𝑙2
𝑁2 + 

𝐺𝑥1 − 𝐺𝑥0

2∆C𝑙1
𝑁1  

=  𝐵𝑛𝑢𝑐 

(2) 

 

𝑑𝑁𝑖

𝑑𝑡
 +  

𝐺𝑥𝑖

2∆𝐶𝑙𝑖+1
𝑁𝑖+1 +

𝐺𝑥𝑖 − 𝐺𝑥𝑖−1

2∆𝐶𝑙𝑖
𝑁𝑖

+ 
𝐺𝑥𝑖−1

2∆𝐶𝑙𝑖−1
𝑁𝑖−1 =  0  

(3) 

 

𝑑𝑁𝑛

𝑑𝑡
 + 

𝐺𝑥

2∆𝐶𝑙
𝑁𝑛 + 

𝐺𝑥

2∆𝐶𝑙
𝑁𝑛−1 =  0 (4) 

 

The kinetic models of Bnuc, Gx, and Dx  are 

shown in Eqs. (5)– (7) where all models were 

dependent on relative supersaturation, S. S= 

(C-Csat)/Csat was applied to the model 

equations. Then, the mathematical model 

was solved using the parameters and initial 

conditions shown in Table 1. 

 

𝐵𝑛𝑢𝑐 = 𝑘𝑏𝑆𝑏𝑉 (5) 

 

𝐺𝑥𝑖
= 𝑘𝑔𝑆𝑔(1 + 𝛼𝑔𝐿𝑥𝑖)

𝛽𝑔
 (6) 

  

𝐷𝑥𝑖
= 𝑘𝑑𝑆𝑑(1 + 𝛼𝑑𝐿𝑥𝑖)𝛽𝑑 (7) 

  

 

Table 1. Model parameters and initial 

conditions of the process 

Parameters  

Csat 𝐶𝑠𝑎𝑡 = 3.63 + 0.0243𝑇 + 0.00358𝑇2 

Bnuc 𝐵𝑛𝑢𝑐 = 0.0380(𝑆)3.41741−5 

Gx 𝐺𝑥𝑖
= 8.5708(𝑆)1(1 + 0.005(𝐿𝑥𝑖))1.5777 

Dx 𝐷𝑥𝑖
= 1.28(𝑆)0.98(1 + 0.02(𝐿𝑥𝑖))0.86 

nfeed 90  

Tfeed 40.0 

Tfinal 17.0 

C0 0.104 

ρc 1.75 x 103 

kv 0.62 

 

The CSD, fn can be calculated based on 

Eq. (8) since the method of classes (MOC) was 

used to solve PBE, where the size coordinate 

was discretized into discrete size bins. 

 

𝑓𝑛(𝐿𝑥𝑖) =
1

2
(

𝑁𝑖 + 𝑁𝑖+1

𝛥𝐶𝑙
) (8) 

 

 

Optimization Strategies 

The seeded batch crystallization process 

was simulated using potash alum in water for 

four chosen optimization algorithms to 

achieve the best CSD profile. The 

optimization algorithms with objective 

functions of maximizing mean crystal size (I), 

minimizing CV (II), and minimizing nucleus-

grown crystals (III) were selected from the 

literature because these are frequently used 

in the literature for achieving optimal cooling 

profiles. The dissolution algorithm of 

maximizing CSD (IV) has been considered to 

be of recent interest. These optimization 

algorithms were integrated, especially in the 

equations of the algorithm with the method 

of classes for consistent interpretation of CSD 

throughout the simulations, and thus, were 

shown in Table 2.  

To ensure a suitable temperature 

trajectory, different constraints included 

minimum and maximum temperature, 

minimum and maximum temperature ramp 

rates, the final concentration of solute limited 

by the maximum final concentration set for 

the process, and decision variables 

containing slopes of dT/dt. These 

optimization algorithms are solved in Matlab 

using sequential quadratic programming 

(SQP) under the ‘fmincon’ function.  
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Table 2. Summary of selected optimization algorithm from the literature  

 Objective 

Functions 

 References 

I Max. mean 

crystal size 

max 𝐿𝑥𝑖 

w.r.t. 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤  𝑇𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 ≤ 𝑑𝑇/𝑑𝑡 ≤  𝑅𝑚𝑎𝑥 

𝐶𝑓𝑖𝑛𝑎𝑙 ≤  𝐶𝑓𝑖𝑛𝑎𝑙,𝑚𝑎𝑥 

Sanzida and Nagy  

(2019) 

II Min. CV 
𝑚𝑖𝑛 [((

𝑁𝑖

∆𝐶𝑙𝑖
) + (

𝑁𝑖+1

∆𝐶𝑙𝑖+1
) /2) − 1]

1/2

 

w.r.t. 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤  𝑇𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 ≤
𝑑𝑇

𝑑𝑡
≤  𝑅𝑚𝑎𝑥 

𝐶𝑓𝑖𝑛𝑎𝑙 ≤  𝐶𝑓𝑖𝑛𝑎𝑙,𝑚𝑎𝑥 

Ashraf and Rao 

(2022) 

III Min. Nucleus-

grown crystals 

min 𝑓𝑛 (250𝜇𝑚) 

w.r.t. 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤  𝑇𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 ≤ 𝑑𝑇/𝑑𝑡 ≤  𝑅𝑚𝑎𝑥 

𝐶𝑓𝑖𝑛𝑎𝑙 ≤  𝐶𝑓𝑖𝑛𝑎𝑙,𝑚𝑎𝑥 

Seki and Su  

(2015) 

IV Max. CSD 
𝑚𝑖𝑛 ∑(𝑓𝑛(𝐿𝑥𝑖) − 𝑓𝑛

𝑡𝑎𝑟𝑔𝑒𝑡
(𝐿𝑥𝑖)2

𝑁

𝑖=1

 

w.r.t. 𝜃𝑇,𝑚𝑖𝑛 ≤ 𝜃𝑇 ≤  𝜃𝑇,𝑚𝑎𝑥 

0 ≤  𝑡𝑓 ≤  𝑡𝑓,𝑚𝑎𝑥 

𝐶𝑓𝑖𝑛𝑎𝑙 ≤  𝐶𝑓𝑖𝑛𝑎𝑙,𝑚𝑎𝑥 

Nagy et al. (2019) 

 

RESULTS AND DISCUSSION 

 

Figures 1 to 4 show the seeded batch 

crystallization process simulation results for 

the potash alum case study in an open-loop 

strategy. Figure 1 shows the temperature 

profiles for linear, and optimizations labeled I, 

II, III, and IV. The linear cooling profile serves 

as the reference profile for analyzing all the 

optimizations for the potash alum 

crystallization process, whereby the 

temperature of its solution was reduced from 

40 to 17 ℃ linearly. The temperature profile 

of optimization I, which is the maximization 

of mean crystal length obtained by solving 

the optimization algorithm in Table 2, follows 

the cubic cooling profile and descends 

accordingly from 40 to 17 ℃. The potash alum 

solution for optimization II, which minimizes 

CV, has a smaller cubic curve of temperature 

(faster temperature drop) with a similar 

temperature reduction to optimization I. 

Optimization III, which minimizes nucleus-

grown crystals, also has a similar decrease in 

temperature but with a larger cubic curve 

(slower temperature drop) compared to 

optimizations I and II. Lastly, optimization IV, 

which maximizes CSD, has a temperature 

profile that is different from others. It linearly 

decreased from 40 to 21.8 ℃, then increased 

linearly to 30 ℃, and linearly decreased until 

17 ℃. These temperature profiles all result 

from the solved optimization algorithms in 

Table 2. Different temperature profiles are 

obtained for each objective function as 

different objectives have different pre-set 

values of constraints. Different temperature 

drop for cubic cooling policy was applied for 

the optimization I to III as this cubic strategy 

is well established for maximizing CSD, 
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reducing CV, and suppressing secondary 

nucleation in literature (Ashraf and Rao, 2022; 

Hojjati and Rohani, 2005; Nagy et al., 2019). 

Then, these pre-set constraints generate a 

specific temperature profile for the selected 

process, as shown in Figure 1 (Hemalatha et 

al., 2018). 
 

 

Fig. 1: Temperature profiles of all strategies 

 

 

Fig. 2: Supersaturation profiles of all 

strategies 

 

Next, Figure 2 displays the results of 

supersaturation profiles for each potash alum 

crystallization process optimization. 

Compared to the supersaturation profile of 

the linear cooling curve, which peaks at 36 

minutes of operation, optimization I has a 

peak of supersaturation at 63 minutes of 

operation despite having the same 

supersaturation value at 0.279. This 

supersaturation profile corresponds to the 

drop in temperature profile, whether fast or 

slow, as supersaturation is a temperature-

dependent equation (Lee et al., 2019). This 

equation of Csat shows this in Table 1, which 

involves the calculation of relative 

supersaturation, S. Since the temperature 

profile generated in optimization I was 

dropped slowly following the cubic cooling 

trend, the peak of supersaturation was shifted 

to the latter operation time. For optimization 

II, the supersaturation profile has a peak of 

0.282 at an operation time of 54 minutes. 

Since it has a faster rate of temperature drop 

compared to optimization I earlier peak of 

supersaturation is expected. Optimization III, 

which has the slowest decrement of 

temperature amongst others, has a peak of 

supersaturation later than others at 72 

minutes of operation and a value of 0.318. 

The high value of supersaturation’s peak, 

compared to optimization I and II, is due to 

the steepest drop in temperature to reach 

17 ℃ after 40 minutes of slow decrement in 

temperature. Lastly, optimization IV, which 

has different stages of decrement and 

increment of temperature, contributed to 

three different peaks of supersaturation. The 

first stage of decreased temperature from 40 

to 21.8 ℃has the highest peak compared to 

other optimizations at 30 minutes of 

operations with a value of 0.474. This is 

because its temperature slope at this stage is 

the steepest compared to others. In the 

second stage, where the temperature is 

increased to 30 ℃, the supersaturation peak 

falls inside the negative range at -0.063. This 

negative supersaturation value represents the 

dissolution stage, where the growth of 

crystals is reversed. Finally, the last decreased 

temperature stage has a small peak of 

supersaturation at 75 minutes of operation 
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with a value of 0.061. Optimization IV 

supersaturation profile is the only one with a 

negative range of supersaturation because its 

temperature profile had a heating cycle from 

40 to 60 minutes of operation, unlike other 

profiles. This heating cycle generates 

negative supersaturation, as shown in Figure 

2. All these supersaturation trends displayed 

by all optimizations indirectly translate to the 

nucleation, growth, and dissolution rates of 

the crystals, which facilitate the formation of 

distributed crystals. Supersaturation has a 

proven relationship with each respective rate, 

where a high peak of positive supersaturation 

signifies high nucleation and crystal growth 

rates. In contrast, a negative peak means a 

high dissolution rate (Adnan et al., 2019). 

Based on the results in Figures 1 and 2, the 

impact of the supersaturation-temperature 

relationship is consistent with the 

fundamentals of the crystallization process, 

which indicates that a fast temperature drop 

will have a high supersaturation level that 

contributes to high growth and nucleation 

rate (Hojjati and Rohani, 2005; Lee et al., 

2019).  

Figure 3 shows the final CSD of each 

optimization against the linear cooling profile 

resulting from the supersaturation value of 

each profile. In contrast, Figure 4 shows the 

close-up of secondary peaks for all strategies. 

Each optimization strategy has two peaks of 

the final CSD: primary and secondary. The 

existence of a secondary peak despite a 

primary peak (grown seed crystals) is 

expected for all cases as the supersaturation-

dependent mechanism of nucleation and 

crystal growth co-exist concurrently in line 

with the fundamentals of crystallization (Lee 

et al., 2019; Nagy et al., 2019). The primary 

peak is the grown seed crystals ranging from 

250 to 1000 µm, and the secondary peak 

represents the nucleus-grown crystals 

ranging less than 250 µm. Mean crystal size is 

the average crystal size in the CSD data, while 

volume distribution represents the area 

under the CSD’s curve.  

 

 

Fig. 3: Final CSD of all strategies 

 

 

Fig. 4: Secondary peaks of all strategies 

 

For optimization I, the primary peak is 

larger in terms of mean crystal size, and the 

secondary peak is smaller in volume 

compared to the CSD of linear strategy. This 

indicates the supersaturation profile of 

optimization strategy I is slowly increasing 

from the beginning of the process due to a 

slower temperature decrement, resulting in 

better-grown seed distribution and 

suppression of nucleated crystals compared 

to linear strategy. Optimization II, it has 

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 500 1000

V
o

lu
m

e 
D

is
tr

ib
u

ti
o

n
 (

m
3

/m
)

Crystal Size (µm)

Linear

I

II

III

IV

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 50 100 150

V
o

lu
m

e
 D

is
tr

ib
u

ti
o

n
 (

m
3
/m

)

Crystal Size (µm)

Linear

I

II

III

IV

|----------------------------------| 

Primary 

|-----------| 

Secondary                                              



S. Z. Adnan, N. A. F. A. Samad   283 

 

almost similar primary and secondary peaks 

compared to the linear strategy. This is 

because it has a temperature profile closer to 

a linear cooling profile. Meanwhile, 

optimization III has a larger CSD and smaller 

secondary peak volume than linear and 

optimizations I and II. This is consistent with 

the trends of its temperature and 

supersaturation profiles against those three. 

Optimization IV, however, has the largest size 

of primary peak but has a similar volume of 

secondary peak with optimization III. This 

may be due to its high supersaturation 

profile, which induced high nucleation and 

crystal growth rates. The dissolution stage 

(negative supersaturation) does not have 

enough room to reduce fine crystals formed 

by the previous high nucleation rate, thus left 

with a similar number of fine crystals with 

optimization III. 

 

Table 3. CSD data for all strategies   

Stra-

tegy 

Mean Crystal 

Size (µm) 

Volume Distribution 

(m3/m) 

Seed Nucleated Seed Nucleated 

Linear 380 40 0.00491 0.00191 

I 405 40 0.00457 0.00144 

II 390 40 0.00478 0.00166 

III 440 30 0.00421 0.00071 

IV 490 40 0.00373 0.00071 

 

Table 3 summarizes the detailed results of 

potash alum simulation for each optimization 

strategy. It is observed that optimization IV 

has the lowest height and volume distribution 

in terms of its primary peak at 0.00373 m3/m. 

This is because of the dominant size-

dependent growth of the crystals, where the 

crystals will grow more dispersed based on 

their growth rate (Ashraf and Rao, 2022; 

Szilagyi and Nagy, 2019). Also, it has the 

largest mean crystal size of the primary peak 

at a mean crystal size of 490 µm, which 

contributed to the ample amount of time for 

the seed crystals to grow during its two high 

supersaturation stages.  

Optimizations III and IV have the least 

and similar volume distribution but differ in 

mean crystal size, whereas optimization IV 

has larger crystals than optimization III. As 

mentioned earlier, the dissolution stage does 

not offer enough time for the fine crystals 

generated from the previous high nucleation 

rate to dissolve completely, thus producing 

the same number of fine crystals. The 

different area values under the peak (volume 

distribution) and CSD for the primary peak of 

all optimizations are anticipated as these 

values are highly dependent on both 

nucleation and crystal growth rates. The 

supersaturation level of each respective 

optimization case influences these rates. The 

same goes for the data for the secondary 

peak. The data on mean crystal size for the 

secondary peak may be similar, but the 

respective data on volume distribution prove 

otherwise. Thus, from these results, 

optimization IV provides the best 

performance in achieving large sizes of grown 

seed crystals and minimum fines. Also, these 

results show that different optimization 

algorithms with different sets of constraints 

generate different temperature profiles, 

which result in different optimized final CSD. 

Therefore, the best optimization algorithm 

for the selected production target must be 

carefully chosen. 

 

CONCLUSIONS 

 

This paper analyses four optimization 

algorithms for seeded batch potash alum 

crystallization case study against linear 

cooling strategy via simulation in Matlab. The 

optimization algorithms consist of 

maximizing mean crystal size (I), minimizing 
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CV (II), minimizing fines (III), and maximizing 

CSD (IV). From the analysis, optimization IV 

has the best performance where its final CSD 

is the largest (490 µm) in contrast with linear 

strategy (380 µm) and has the minimum 

number of fine crystals at 0.00071 m3/m 

against 0.00191 m3/m of linear strategy. The 

dissolution strategy in optimization IV has 

contributed to minimum fine crystals and 

larger mean crystal size of grown seed 

crystals for the potash alum crystallization 

process. Therefore, the optimal cooling 

strategy, which has large-grown seed crystals 

and the least fines, was established for the 

studied system of potash alum using the 

dissolution strategy. Future research should 

be directed at optimizing this dissolution 

cooling strategy by implementing closed-

loop control. 
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NOMENCLATURE 

 

𝐵𝑛𝑢𝑐 : birth of nuclei rate [cm-3 min-1]  

𝑏 : nucleation order  

𝐶 : solute concentration [g solute g 

solvent-1] 

 

𝐶0 : solute concentration at t=0 [g 

solute g solvent-1] 

 

𝐶𝑠𝑎𝑡 : saturation concentration [g 

solute g solvent-1] 

 

𝐶𝑓𝑖𝑛𝑎𝑙 : final solute concentration at the 

end of batch [g solute g solvent-1] 

 

𝐷𝑥 : death/ dissolution rate [µm s-1]  

𝑑 : dissolution order  

𝑓  relative shape function of 

crystals 

 

𝑓𝑛 : crystal size distribution (CSD)   

𝐺 : growth rate [µm s-1]  

𝐺𝑥  : growth rate in length direction 

[µm s-1] 

 

𝑔  : growth order  

𝑗 : slopes of 𝑑𝑇/𝑑𝑡    

𝑘𝑏  : kinetic coefficient for nuclea-

tion [# particles cm-3 min-1] 

 

𝑘𝑑  : kinetic coefficient for dissolu-

tion [# particles cm-3 min-1] 

 

𝑘𝑔 : kinetic coefficient for growth [# 

particles cm-3 min-1] 

 

𝑘𝑣 : crystal shape factor  

𝐿 : particle size [µm]  

𝐿𝑥 : length of crystal particles [µm]  

𝑛  : population density  

𝑛𝑓𝑒𝑒𝑑  : population density of feed [µm]  

𝑁  : number of bins  

𝑁𝑖  : Number of crystals per class i [# 

particles cm-3] 

 

𝑅  : temperature ramp [℃]  

𝑆  : relative supersaturation  

𝑆𝑏  : supersaturation for nucleation  

𝑆𝑑  : supersaturation for dissolution  

𝑆𝑔  : supersaturation for growth  

𝑇 : temperature [℃]  

𝑡 : crystallization time [min]  

𝑡𝑓 : batch duration [min]  

𝑇𝑓𝑒𝑒𝑑 : feed temperature [℃]  

𝑇𝑓𝑖𝑛𝑎𝑙 : final batch temperature [℃]  

𝑉 : mean crystal volume [cm3]  

𝜌𝑐  : density of crystals [kg m-3]  

𝛼𝑑  : dissolution parameter  

𝛼𝑔  : growth parameter  

𝜃𝑇 : decision variables for temperature  

𝛽𝑑 : dissolution parameter  

𝛽𝑔 : growth parameter  

∆𝐶𝑙 : size of class [µm]  
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