Kinetic and combustion characteristics of oil palm empty fruit bunch biochar using thermogravimetric analysis

https://doi.org/10.22146/teknosains.89413

Indah Sakina Pansawati(1*), Yustika Agustin(2), Yusuf Ahda(3)

(1) National Research and Innovation Agency
(2) National Research and Innovation Agency
(3) National Research and Innovation Agency
(*) Corresponding Author

Abstract


The usage of renewable energy is a mitigation phenomenon majorly impacting the power sectors, with biomass being one of the sources directly replacing coal in various applications. This leads to the portrayal of biomass having the potential to be a carbonaceous material, namely the Empty Fruit Bunch (EFB) of oil palm. To increase the characteristics of EFB, it can be converted into carbon-based products through thermochemical processes, such as hydrothermal carbonization. Therefore, this study aimed to compare the characteristics of feedstock and biochar EFB using the TGA method. The heating rate used in this study is 10 – 30°C/min at five °C/min intervals. The effect of heating rate on kinetic parameters and thermal (DTG, TGA) and combustion (T ignition, T burn out) characteristics was also determined. This study carried out the HTC process at temperatures of 210ᵒC and 230ᵒC. The results showed that biochar EFB had a higher ignition, burnout temperature, and activation energy than raw EFB. Ignition temperatures for EFB-HT210°C and EFB-HT230°C were 297°C and 298°C; burnout temperatures for EFB-HT210°C, EFB-HT230°C were 407°C and 450°C; and the activation energy for EFB-HT210°C, EFB-HT230°C were 58.84 kJ/mol and 62.16 kJ/mol. Besides the characteristics of biomass, the heating rate also affects combustion. This proved that increased heating rate caused higher ignition and burnout temperature and decreased activation energy. The results also indicated that the difference in heating rate influenced the peak temperature in DTG.


Keywords


Thermogravimetric Analysis; Activation Energy; Empty Fruit Bunch; Heating Rate; Combustion

Full Text:

PDF


References

[1] Farajzadeh, Z., Ghorbanian, E. and Tarazkar, M. H. 2023. The impact of climate change on economic growth: Evidence from a panel of Asian countries. Environmental Development. Vol. 47, p. 100898, Sep. 2023, doi: 10.1016/j.envdev.2023.100898.

[2] Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 365, no. 1549, pp. 2019–2024, Jul. 2010, doi: 10.1098/rstb.2010.0021.

[3] Naseem, S., Irfan Abid, M., Kamran, M., Rayyan Fazal, M., Abbas, G., Riswan Abid, M., and Zamir, Z. 2020. Rural Areas Interoperability Framework: Intelligent Assessment of Renewable Energy Security Issues in Pakistan. International Journal of Smart Grid. [Online] Available: https://www.researchgate.net/publication/342561901

[4] Ministry of Agriculture. 2022. Statistical of national leading estate crops commodity 2021-2023. Jakarta.

[5] Novianti, S., Nurdiawati, A., Zaini, I. N., Prawisudha, P., Sumida, H. and Yoshikawa, K. 2015. Low-potassium Fuel Production from Empty Fruit Bunches by Hydrothermal Treatment Processing and Water Leaching. Energy Procedia. Vol. 75, pp. 584–589, Aug. 2015, doi: 10.1016/j.egypro.2015.07.460.

[6] Ahda, Y., Prakoso, T., Rasrendra, C. B. and Susanto, H. 2019. Hydrothermal treatment, pelletization and characterization of oil palm empty fruit bunches as solid fuel. IOP Conference Series: Materials Science and Engineering. Vol. 543, no. 1, p. 012061, Jun. 2019, doi: 10.1088/1757-899X/543/1/012061.

[7] Sisuthog, W., Attanatho, L. and Chaiya, C. 2022. Conversion of empty fruit bunches (EFBs) by hydrothermal carbonization towards hydrochar production. Energy Reports. Vol. 8, pp. 242–248, Dec. 2022, doi: 10.1016/j.egyr.2022.10.183.

[8] Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., and Sbirrazzuoli, N. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta Journal. Vol. 520, no. 1–2, pp. 1–19, Jun. 2011, doi: 10.1016/j.tca.2011.03.034.

[9] Yorulmaz, S. Y. and Atimtay, A. T. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology. Vol. 90, no. 7–8, pp. 939–946, Jul. 2009, doi: 10.1016/j.fuproc.2009.02.010.

[10] Varol, M., Atimtay, A. T., Bay, B. and Olgun, H. 2010. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta Journal. Vol. 510, no. 1–2, pp. 195–201, Oct. 2010, doi: 10.1016/j.tca.2010.07.014.

[11] Attasophonwattana, P., Pukrushpan, J.-T., and Areeprasert, C. 2021. Thermal Decomposition and Kinetic Study of Empty Fruit Bunch Derived Hydrochar Produced from Hydrothermal Carbonization and Washing Processes. BUDAPEST 19th International Conference on Agricultural, Chemical, Biological & Environmental Sciences (ACBES-21). Universal Researcher (UAE), Jun. 2021.

[12] Hamzah, N. S., Idris, S. S., Rahman, N. A., Abu Bakar, N. F. and Matali, S. 2021. Thermal Analysis of Co-Utilization of Empty Fruit Bunch and Silantek Coal Under Inert Atmosphere Using Thermogravimetric Analyzer (TGA). Frontiers in Energy Research. Vol. 8, Feb. 2021, doi: 10.3389/fenrg.2020.608756.

[13] Altun, N. E., Hicyilmaz, C. and Kök, M. V. 2003. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite. Journal of Analytical and Applied Pyrolysis. Vol. 67, no. 2, pp. 369–379, May 2003, doi: 10.1016/S0165-2370(02)00075-X.

[14] El-Sayed, S. A. and Khairy, M. 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels. Vol. 6, no. 3–4, pp. 157–170, Jul. 2015, doi: 10.1080/17597269.2015.1065590.

[15] Ninduangdee, P., Arromdee, P., Palamanit, A., Boonrod, K. and Prasomthong, S. 2022. Combustion Characteristics of a Biomass-biomass Co-combustion using Thermogravimetric Analysis. International Journal of Renewable Energy Research – IJRER. Vol. 12, No. 2.

[16] Lu, J. J. and Chen, W. H. 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy. Vol. 160, pp. 49–57, Dec. 2015, doi: 10.1016/j.apenergy.2015.09.026.

[17] wei Wang, G., liang Zhang, J., gang Shao, J., Sun, H. and bin Zuo H. 2014. Thermogravimetric Analysis of Coal Char Combustion Kinetics. Journal of Iron and Steel Research International. Vol. 21, no. 10, pp. 897–904, Oct. 2014, doi: 10.1016/S1006-706X(14)60159-X.

[18] Tang, L., Xiao, J., Mao, Q., Zhang, Z., Yao, Z., Zhu, X., Ye, S. and Zhong, Q.. 2022. Thermogravimetric Analysis of the Combustion Characteristics and Combustion Kinetics of Coals Subjected to Different Chemical Demineralization Processes. ACS Omega. Vol. 7, no. 16, pp. 13998–14008, Apr. 2022, doi: 10.1021/acsomega.2c00522.

[19] Hartulistiyoso, E., Farobie, O., A. Anis, L., Syaftika, N., Asep, B., Amrullah, A., R. Moheimani, N., Karnjanakom, S. and Matsumura, Y. 2023. Co-Production of Hydrochar and Bioactive Compounds from Ulva lactuca via a Hydrothermal Process. Carbon Resources Conversion, May 2023, doi: 10.1016/j.crcon.2023.05.002.

[20] Balmuk, G., Cay, H., Duman, G., Kantarli, I. C. and Yanik, J. 2023. Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance. Energy. Vol. 278, p. 127803, Sep. 2023, doi: 10.1016/j.energy.2023.127803.

[21] Hoekman, S. K., Broch, A. and Robbins, C. 2011. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy and Fuels. Vol. 25, no. 4, pp. 1802–1810, Apr. 2011, doi: 10.1021/ef101745n.

[22] Sharma, H. B., Sarmah, A. K. and Dubey, B. 2020. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews. Vol. 123, p. 109761, May 2020, doi: 10.1016/j.rser.2020.109761.

[23] de Paula Protásio, T., Fernando Trugilho, P., da Silva César, A. A., Napoli, A., Alves de Melo, I. C. N. and Gomes da Silva, M. 2014. Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil. Springerplus. Vol. 3, no. 1, p. 124, Dec. 2014, doi: 10.1186/2193-1801-3-124.

[24] Liu, L., Pang, Y., Lv, D., Wang, K. and Wang, Y. 2021. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles. Process Safety and Environmental Protection. Vol. 151, pp. 39–50, Jul. 2021, doi: 10.1016/j.psep.2021.05.011.

[25] Olatunji, O. O., Akinlabi, S. A., Mashinini, M. P., Fatoba, S. O. and Ajayi, O. O. 2018. Thermo-gravimetric characterization of biomass properties: A review. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Nov. 2018. doi: 10.1088/1757-899X/423/1/012175.

[26] El-Sayed, S. A., Khass, T. M. and Mostafa, M. E. 2023. Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques. Biomass Conversion and Biorefinery, doi: 10.1007/s13399-023-03926-2.

[27] Dwivedi, K. K., Chatterjee, P. K., Karmakar, M. K. and Pramanick, A. K. 2019. Pyrolysis characteristics and kinetics of Indian low rank coal using thermogravimetric analysis. International Journal of Coal Science & Technology. Vol. 6, no. 1, pp. 102–112, Mar. 2019, doi: 10.1007/s40789-019-0236-7.



DOI: https://doi.org/10.22146/teknosains.89413

Article Metrics

Abstract views : 773 | views : 329

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Indah Sakina Pansawati et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing