Determination of the convective heat transfer constant (c and n) in a solar still

Dan Mugisidi(1*), Abdul Rahman(2), Oktarina Heriyani(3), Pancatatva Hesti Gunawan(4)

(1) Mechanical Engineering Department, Technical Faculty, University Prof. Dr. Hamka
(2) Mechanical Engineering Department, Technical Faculty, University Prof. Dr. Hamka
(3) Electrical Engineering Department, Technical Faculty, University Prof. Dr. Hamka
(4) Mechanical Engineering Department, Technical Faculty, University Prof. Dr. Hamka
(*) Corresponding Author


The geometry of a solar still determines the convection constants C and n, which in turn affect the convection heat transfer coefficient’s value and mass. A method for determining the value of convection heat transfer constants C and n has already been developed by the researchers. Therefore, this study aimed to use several methods and theories to find the value of convection heat transfer constants C and n. The results are then compared with the results of the study. The solar still used in this study has one slope. To reduce variables that cannot be controlled, the data collection was conducted indoors using a halogen lamp that can be regulated as a heat source for 24 hours nonstop. The sea surface height in the solar still was maintained at a height of 20 mm, using a height regulator. Temperature was measured using a data logger set to enter data every hour. The desalinised clean water was stored in bottles placed on scales that were recorded every one hour. Room temperature was maintained in the range of 35 to 36 oC. The data in this study were used to calculate the heat transfer constants C and n to obtain the value of the convection heat transfer coefficient and mass calculation. This study compares the calculation models of Tiwari, Dunkle and Power. The following calculation model results: Tiwari model, C = 0.082 and n = 0.612; Dunkle model, C = 0.075 and n = 1/3; Power model, C = 0.815 and n = 0.611. The C and n values obtained with these four approaches reveal that the results from the Power model calculation are the closest to the actual mass, showing a percentage deviation of 1.63%.


Solar Still; Distillation; Desalination; Heat Transfer Constant; Convective Coefficient

Full Text:



Abujazar, M. S. S., Fatihah, S., Rakmi, A. R., & Shahrom, M. Z. (2016). The effects of design parameters on productivity performance of a solar still for seawater desalination: A review. Desalination, 385, 178–193.

Anggara, M., Widhiyanuriyawan, D., & Sasongko, M. N. (2016). Pengaruh penggunaan pasir besi pada. Senas Pro, 345–353.

Belessiotis, V., Kalogirou, S., & Delyannis, E. (2016). Thermal Solar Desalination - Methods and Systems (1St ed.; M. Convey, ed.). London: Academic Press.

Boutriaa, A., & Rahmani, A. (2017). Thermal modeling of a basin type solar still enhanced by a natural circulation loop. Computers and Chemical Engineering, 101, 31–43.

Chen, Q., Liu, Y. Y., Xue, C., Yang, Y. L., & Zhang, W. M. (2015). Energy self-sufficient desalination stack as a potential fresh water supply on small islands. Desalination, 359, 52–58.

Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346.

Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147.

Dunkle, R. V. (1961). Solar water distillation: the roof type still and a multiple effect diffusion still, in: International Development in Heat Transfer: International ASME Heat Transfer Conference Part V, University of Colorado, Boulder Colorado, 1961, pp. 895-902.

Dwivedi, V. K., & Tiwari, G. N. (2010). Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination, 250(1), 49–55.

El-Bahi, A., & Inan, D. (1999). Analysis of a parallel double glass solar still with separate condenser. Renewable Energy, 17(4), 509–521.

Elango, C., Gunasekaran, N., & Sampathkumar, K. (2015). Thermal models of solar still - A comprehensive review. Renewable and Sustainable Energy Reviews, 47, 856–911.

Elango, T., & Kalidasa Murugavel, K. (2015). The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, 359, 82–91.

Fath, H. E. S., & Hosny, H. M. (2002). Thermal performance of a single-sloped basin still with an inherent built-in additional condenser. Desalination, 142, 19–27.

Frank P. Incropera David P. Dewitt, Theodore L. Bergman, A. S. L. (1993). Fundanmentals of Heat and Mass Hransfer.

Haddad, O. M., Al-Nimr, M. A., & Maqableh, A. (2000). Enhanced solar still performance using a radiative cooling system. Renewable Energy, 21(3–4), 459–469.

Husham M. Ahmed. (2012). Seasonal performance evaluation of solar stills connected to passive external condensers. Scientific Research and Essays, 7(13).

Irvandi, G., Nugroho, T. F., & Prastowo, H. (2017). Analisa Teknik dan Ekonomis Terhadap Metode Direct System Pada Solar Energy Distillation di Pulau Tabuhan untuk Kapasitas 100 L/hari. Jurnal Teknik ITS, 5(2), 506–510.

Mohamed, A. F., Hegazi, A. A., Sultan, G. I., & El-Said, E. M. S. (2019). Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Applied Thermal Engineering, 150(January), 1206–1215.

Moria, H. (2017). Radiation distribution uniformization by optimized halogen lamps arrangement for a solar simulator. Proceedings of the International Conference on Industrial Engineering and Operations Management, (December), 1499–1500.

Mugisidi, D., & Heriyani, O. (2018). Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy. The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017), 31(2018).

Murugan, D. K., & Elumalai, N. (2014). Modelling and economic analysis of an improved duplex solar still. Applied Mechanics and Materials, 592594, 2386–2390.

Naim, M. M., & Abd El Kawi, M. A. (2003). Non-conventional solar stills. Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination, 153(1–3), 55–64.

Nazar, R. (2017). Karakteristik Perpindahan Panas Konveksi Alamiah Aliran Nanofluida Al2O3-Air Di Dalam Pipa Anulus Vertikal. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 18(1), 21.

Nugraha, G. S., Marwan, M., & Muhni, A. (2019). APLIKASI METODE RESISTIVITAS 2D UNTUK MENENTUKAN INTRUSI AIR LAUT DI LAMBADA LHOK, ACEH BESAR, ACEH. Jurnal Teknosains: Jurnal Ilmiah Sains Dan Teknologi, 9(1).

Rahmani, A., Boutriaa, A., & Hadef, A. (2015). An experimental approach to improve the basin type solar still using an integrated natural circulation loop. Energy Conversion and Management, 93, 298–308.

Rubio, E., Fernández, J. L., & Porta-Gándara, M. A. (2004). Modeling thermal asymmetries in double slope solar stills. Renewable Energy, 29(6), 895–906.

Saputro, A. E. N., Tarigan, B. V, Jafri, M., Mesin, J. T., & Cendana, U. N. (2016). Pengaruh Sudut Kaca Penutup dan Jenis Kaca terhadap Efisiensi Kolektor Surya pada Proses Destilasi Air Laut. LONTAR Jurnal Teknik Mesin Undana, 03(01), 61–70.

Sartori, E. (2000). A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy, 68(1), 77–89.

Soni, U. R., Brahmatt, D. P. K., & Patel, H. B. (2013). A Review to Increase Productivite Output of An Active Solar Distillation System. International Journal on Recent and Innovation Trends in Computing and Communication, 1(12), 843–848.

Speight, J. G. (2017). Environmental Inorganic Chemistry for Engineers (P. Jardim, ed.).

Srithar, K., & Rajaseenivasan, T. (2018). Recent fresh water augmentation techniques in solar still and HDH desalination – A review. Renewable and Sustainable Energy Reviews, 82(September 2017), 629–644.

Sudarmadji, Suprayogi, S., Widyastuti, M., & Harini, R. (2011). Konservasi Mata Air Berbasis Masyarakat Di Unit Fisiografi Pegunungan Baturagung, Ledok Wonosari Dan Perbukitan Karst Gunung Sewu, Kabupaten Gunungkidul. Jurnal Teknosains: Jurnal Ilmiah Sains Dan Teknologi, 1(1), 1–1.

Tabrizi, F. F., Dashtban, M., & Moghaddam, H. (2010). Experimental investigation of a weir-type cascade solar still with built-in latent heat thermal energy storage system. Desalination, 260(1), 248–253.

Tsilingiris, P. T. (2015). Parameters affecting the accuracy of Dunkle’s model of mass transfer phenomenon at elevated temperatures. Applied Thermal Engineering, 75, 203–212.

Yeo, K. B., Ong, C. M., & Teo, K. T. K. (2014). Heat Transfer Energy Balance Model of Single Slope Solar Still. Journal of Applied Sciences, 14(23), 3344–3348.


Article Metrics

Abstract views : 635 | views : 695


  • There are currently no refbacks.

Copyright (c) 2021 Dan Mugisidi, Abdul Rahman, Oktarina Heriyani, Pancatatva H Gunawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright © 2019 Jurnal Teknosains     Submit an Article        Tracking Your Submission

Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing