Karakteristik temperatur fluida dingin pada grooved double pipe heat exchanger

https://doi.org/10.22146/teknosains.43291

Putu Wijaya Sunu(1*), I Putu Darmawa(2), Anak Agung Ngurah Bagus Mulawarman(3), I Made Suarta(4), I Putu Gede Sopan Rahtika(5)

(1) Politeknik Negeri Bali
(2) Politeknik Negeri Bali
(3) Politeknik Negeri Bali
(4) Politeknik Negeri Bali
(5) Politeknik Negeri Bali
(*) Corresponding Author

Abstract


Heat exchangers have widespread applications in many industrials process. There are many kind of heat exchanger. One of the simply heat exchanger is double pipe heat exchanger. The need for lightweight and enhancing the heat transfer of heat exchanger accomodated by surface engineering. One of the surface passive technique applications is groove. Incising groove in pipe as concerned wide consideration as it need no additional power, decrease in weight of system and hence give more benefit in heat transfer. The characteristics of heat transfer in grooved double pipe heat exchanger was investigated experimentally in this article. The aim of this investigation is to reveal the phenomenon of temperature characteristics of cold fluid in the heat transfer process in the grooved double pipe heat exchanger. In this study, water are used as both hot and cold fluid with counter flow pattern, and the water flow rate equal to 15 lpm for both fluid. Grooves were incised on the annulus area in the outer wall of tube side with rectangular shape and circumferential pattern. The characteristics of groove dimension that are height of groove is 0,3 mm; distance between grooves is 8 mm; and the groove space which is as independent variables are 1 mm and 2 mm. The data from 1 mm and 2 mm grooves space were compared with no grooved double pipe heat exchanger data (smooth pipe). The hot fluid temperature is 50 ± 0,50C while the cold fluid temperature is 30 ± 0,50C. The temperature data on the inlet and outlet side of heat exchangers for smooth pipe, 1 mm and 2 mm groove space were compared to find out the characteristics of increasing cold fluid temperature. This study used the temperature rate and temperature acceleration method to compare the variables. The result shows that groove installation increases the amount of heat absorbed by cold fluid. The heat exchanger with 1 mm groove spaces, was able to absorb heat about ± 2.3 % better than heat exchanger with 2 mm groove space and 13,1 % better than heat exchanger with no groove.


Keywords


Groove; Circumferential; Heat exchanger; Temperature acceleration; Temperature characteristics

Full Text:

PDF


References

Adiansyah, J. S. 2011. Pipeline program CDM di Indonesia: Sebuah peluang dan Tantangan untuk Industri Pertambangan. Jurnal Teknosains, 1: 7-15.

Aroonrat, K., Jumpholkul, C., Leelaprachakul, R., Dalkilic, A.S., Mahian, O. dan Wongwises, S. 2013. Heat transfer and single-phase flow in internally grooved tube. International Communication in Heat and Mass Transfer, 42: 62-68.

Anakottapary, D.S., Wibolo, A., Sunu, P.W. dan Rajendra I M. 2017. Approach temperature of heating process in double tube heat exchanger with Al2O3-water nanofluid. Advanced Science Letters, 23: 12094–12097.

Baloutaki, M. A., Carriveau, R. dan Ting, D. S. K. 2013. Effect of free-stream turbulence on flow characteristics over a transversely-grooved surface. Experimental Thermal and Fluid Science, 51: 56-70.

Blue Print Pengelolaan Energi Nasional 2005 – 2025. 2005. Jakarta: Badan Koordinasi Energi Nasional.

Choi, K.S. and Orchard, D.M. 1997. Turbulence management using riblets for heat and momentum transfer. Experimental Thermal and Fluid Science, 15: 109-124.

Gad-el-Hak, M. 1989. Flow control. Applied Mechanics Review, 42: 261–293.

Katoh, K., Choi, K.S. dan Azuma, T. 2000. Heat-transfer enhancement and pressure loss by surface roughness in turbulent channel flows. International Journal of Heat and Mass Transfer, 43: 4009-4017.

Keputusan Menteri Energi dan Sumber Daya Mineral No. 0983 K/16/MEM/2004 Kebijakan Energi Nasional. 6 Mei 2004. Jakarta: Biro Hukum dan Humas, Departemen Energi dan Sumber Daya Mineral.

Liu, J., Xie, G. dan Simon, T. W. 2015. Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves. International Journal of Heat and Mass Transfer, 81: 563–577.

Lee S.J, Hee-Chang Lim, Manhee Han dan Seung S. Lee. 2005. Flow control of circular cylinder with a V-grooved micro-riblet film. Fluid Dynamics Research, 37: 246–266.

Peraturan Presiden No. 5 tahun 2006 Kebijakan Energi Nasional. Jakarta: LL RI 2006 diundangkan 25 Januari 2006.

Promvonge, P. 2015. Thermal performance in square-duct heat exchanger with quadruple V-finned twisted tapes. Applied Thermal Engineering, 91: 298-307.

Sunu, P. W. dan Rasta, I M. 2017. Heat transfer enhancement and pressure drop of grooved annulus of double pipe heat exchanger. Acta Polytechnica, 57(2): 125–130.

Sunu, P.W., Anakottapary, D.S., Mulawarman, A. A. N. B., Santosa I D. M. C. dan Negara, I P. S. 2017. Heat transfer characteristics of Fan Coil Unit (FCU) under the effect of chilled water volume flowrate. Journal of Physics: Conference Series, 953 (012058).

Sunu, P. W., Rasta, I M., Anakottapary, D. S., Suarta I M. dan Santosa, I D. M. C. 2017. Capillary tube and thermostatic expansion valve comparative analysis in water chiller air conditioning. Journal of Physics: Conference Series, 953 (012063).

Sunu, P. W., Arsawan, I M., Anakottapary, D. S., Santosa, I D. M. C. dan Yasa, I K. A. 2017. Experimental studies on grooved double pipe heat exchanger with different groove space. Journal of Physics: Conference Series, 953 (012064).

Sunu P.W., Anakottapary D.S. dan Santika W.G. 2016. Temperature approach optimization in the double pipe heat exchanger with groove. Matec web of conference, 58 (04006).

Sunu, P. W., Wardana, I N. G., Sonief A. A. dan Hamidi, N. 2014. Flow behavior and friction factor in internally grooved pipe wall. Advanced Studies in Theoretical Physics, 8(14): 643-647.

Sunu, P. W., Wardana, I N. G., Sonief A.A. dan Hamidi, N. 2014. Turbulent Flow Characteristics in Internally Grooved Pipe. Australian Journal of Basic and Applied Sciences, 8(9): 187-194.

Sunu, P. W., Wardana, I N. G., Sonief A.A. dan Hamidi, N. 2015. The effect of wall groove numbers on pressure drop in pipe flows. International Journal of Fluid Mechanics Research, 42(2): 119 – 130.

Sunu, P.W. 2015. The characteristics of increased pressure drop in pipes with grooves. Advanced Studies in Theoretical Physics, 9(2): 57–61.

Sunu, P. W., Wardana, I N. G., Sonief, A.A. dan Hamidi, N. 2016. Optimal grooves number for reducing pressure drop. Contemporary Engineering Sciences, 9(22): 1067- 1074.

Viswanath, P. R. 2002. Aircraft viscous drag reduction using riblets. Progress in Aerospace Sciences, 38: 571–600.

Yu, R., Sommers A. D. dan Okamoto N.C. 2013. Effect of a micro-grooved fin surface design on the air-side thermal-hydraulic performance of a plain fin-and-tube heat exchanger. International Journal of Refrigeration, 36: 1078-1089.

Zhao D.Y, Huang Z.P, Wang M.J, Wang T dan Jin Y. 2012. Vacuum Casting Replication of micro riblets on Shark Skin for Drag- Reducing Applications. Journal of Materials Processing Technology, 212: 198 – 202.



DOI: https://doi.org/10.22146/teknosains.43291

Article Metrics

Abstract views : 3641 | views : 2479

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Putu Wijaya Sunu, I Putu Darmawa, A.A.N.B Mulawarman, I Made Suarta, I Putu Gede Sopan Rahtika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing