Finite element analysis: stress and strain in chitosan composites under varying cavity dimensions
Andina Widyastuti(1), Diatri Nari Ratih(2*), Widowati Siswomihardjo(3), I Gusti Bagus Budi Dharma(4)
(1) Doctoral Candidate, Dental Science Doctoral Study Program, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Composite resin restorations frequently fail due to secondary caries formation. To address this, the antibacterial potential of chitosan for incorporation into dental composites has been explored. Given the limitations of existing studies—which often lack a focus on biomechanical function, this research used an in silico Finite Element Analysis (FEA) to evaluate the combined effects of chitosan addition and cavity dimension on stress and strain distributions within restorative materials. A 3D model of a human mandibular first molar, derived from micro-CT scanning, was subjected to FEA using varying chitosan concentrations (0%, 0.5%, 1.0%, and 2.0%) and two cavity dimensions (conservative and extensive). Statistical results showed significant differences in stress and strain distributions across the treatment groups. Cavity dimensions significantly influence the distribution of stress and strain. The effect of chitosan addition is secondary. The addition of chitosan in cases of extensive cavities was not strong enough to produce statistically significant changes. The FEA analysis demonstrates a clear influence of cavity geometry on biomechanics: In extensive cavities, the restorative material provides superior structural reinforcement, leading to a stiffer composite unit (high stress, low strain) and limited cusp deformation; while in conservative cavities, the structure exhibits a highly flexible response to loading (low stress, high strain), even with a preserved marginal ridge. The stress concentration in the tooth model was primarily in the cervical area, specifically at the cementoenamel junction (CEJ).
Keywords
Full Text:
PDFReferences
Ab Ghani, S. M., Abu Hassan, M. I., Abdullah, A. H., Ab Ghani, A. R., Izra’ai, S. I., Aregawi, W., Chew, H. P., & Fok, A. (2023). Linear and volumetric shrinkage displacements of resin composite restorations with and without debonding. Dental Materials Journal, 42(5), 659–668. https://doi.org/10.4012/dmj.2023-023
Abuelenain, D., Abou Neel, E., & Aldharrab, A. (2015). Surface and Mechanical Properties of Different Dental Composites. Austin Journal of Dentistry, 2(2). DOI: 10.21767/2471-5122.1000109.
Ali, S., Kumar, N., Ali, D., Mirani, S. A., & Sangi, L. (2015). Investigating The Antibacterial Effect of Chitosan in Dental Resin Composites: A Pilot Study Demographic Data on The Characterization of Oral Clefts in Malaysia View Project Investigating the Antibacterial Effect of Chitosan in Dental Resin Composites: A Pilot Study. In Pakistan Oral & Dental Journal (Vol. 35, Issue 2). https://www.researchgate.net/publication/280306277
Apel, Z., Vafaeian, B., Apel, D. B., & Hussain, A. (2021). Occlusal stresses in beveled versus non-beveled tooth preparation. Biomedical Engineering Advances, 2, 100010. https://doi.org/10.1016/j.bea.2021.100010
Askar, H., Krois, J., Göstemeyer, G., Bottenberg, P., Zero, D., Banerjee, A., & Schwendicke, F. (2020). Secondary caries: what is it, and how it can be controlled, detected, and managed? Clinical Oral Investigations, 24(5), 1869–1876. https://doi.org/10.1007/s00784-020-03268-7
Ausiello, P., Ciaramella, S., Martorelli, M., Lanzotti, A., Gloria, A., & Watts, D. C. (2017). CAD-FE modeling and analysis of class II restorations incorporating resin-composite, glass ionomer and glass ceramic materials. Dental Materials, 33(12), 1456–1465. https://doi.org/10.1016/j.dental.2017.10.010
Azhar, S., Rana, N. F., Kashif, A. S., Tanweer, T., Shafique, I., & Menaa, F. (2022). DEAE-Dextran Coated AgNPs: A Highly Blendable Nanofiller Enhances Compressive Strength of Dental Resin Composites. Polymers, 14(15). https://doi.org/10.3390/polym14153143
Babaei, B., Shouha, P., Birman, V., Farrar, P., Prentice, L., & Prusty, G. (2022). The effect of dental restoration geometry and material properties on biomechanical behaviour of a treated molar tooth: A 3D finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 125. https://doi.org/10.1016/j.jmbbm.2021.104892
Brandão, N. L., Portela, M. B., Maia, L. C., Antônio, A., e Silva, V. L. M., & da Silva, E. M. (2018). Model resin composites incorporating ZnO-NP: Activity against S. mutans and physicochemical properties characterization. Journal of Applied Oral Science, 26. https://doi.org/10.1590/1678-7757-2017-0270
Chojnacka-Brożek, A., Liber-Kneć, A., & Łagan, S. (2024). Compression Behavior of Dental Flowable Composites—Digital Image Correlation and Numerical Analysis. Materials, 17(23). https://doi.org/10.3390/ma17235853
Damanik, W. S., Siregar, M. A., & Lubis, S. (2025). Evaluation of the effect of variations in resin and fiber composition on tensile and compressive properties of natural material composites. Hybrid Advances, 10. https://doi.org/10.1016/j.hybadv.2025.100434
Deb, A., Pai, V., Akhtar, A., & Nadig, R. (2021). Evaluation of microleakage of micro hybrid composite resins versus chitosan-incorporated composite resins when restored in class v cavities using total etch and self-etch adhesives: An in vitro study. Contemporary Clinical Dentistry, 12(4), 346–351. https://doi.org/10.4103/ccd.ccd_414_20
Dimitriu, B., Vârlan, C., Suciu, I., Vârlan, V., Bodnar, D., & Boicescu, D. A. (n.d.). Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy. In Journal of Medicine and Life (Vol. 2, Issue 1). DOI: 10.4323/j.med.life.2009.2.20
Dobrzyński, W., Piszko, P. J., Kiryk, J., Kiryk, S., Michalak, M., Kotela, A., Kensy, J., Świenc, W., Grychowska, N., Matys, J., & Dobrzyński, M. (2025). Dental Resin Composites Modified with Chitosan: A Systematic Review. In Marine Drugs (Vol. 23, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/md23050199
El-Banna, A., Sherief, D., & Fawzy, A. S. (2019). Resin-based dental composites for tooth filling. Advanced Dental Biomaterials, 127–173. https://doi.org/10.1016/B978-0-08-102476-8.00007-4
Fidancioğlu, Y. D., Alkurt Kaplan, S., Mohammadi, R., & Gönder, H. Y. (2025). Three-Dimensional Finite Element Analysis (FEM) of Tooth Stress: The Impact of Cavity Design and Restorative Materials. Applied Sciences (Switzerland), 15(17). https://doi.org/10.3390/app15179677
German, M. J. (2022). Developments in resin-based composites. British Dental Journal, 232(9), 638–643. https://doi.org/10.1038/s41415-022-4240-8
Gönder, H. Y., Mohammadi, R., Harmankaya, A., Yüksel, İ. B., Fidancıoğlu, Y. D., & Karabekiroğlu, S. (2023). Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers, 15(7). https://doi.org/10.3390/polym15071637
Guler, M. S. (2022). The stress distribution of different types of restorative materials in primary molar. Open Chemistry, 20(1), 1451–1457. https://doi.org/10.1515/chem-2022-0240
Guo, W., Li, Y., Wang, S., Wang, Y., Li, C., Jin, Y., Li, Y., Chen, X., & Miao, W. (2023). Photodynamic nano hydroxyapatite with biofilm penetration capability for dental plaque eradication and prevention of demineralization. Colloids and Surfaces B: Biointerfaces, 225. https://doi.org/10.1016/j.colsurfb.2023.113242
Hariharavel, V. P., Rao, A. P. V., Venugopal, R. N., & Peter, J. (2017). Diabetes, diet and dental caries. In International Journal of Diabetes in Developing Countries (Vol. 37, Issue 1, p. 94). Springer India. https://doi.org/10.1007/s13410-015-0400-6
Jlekh, Z. A., & Abdul-Ameer, Z. M. (2018). Evaluation of the cuspal deflection of premolars restored with different types of bulk fill composite restorations (a comparative in vitro study). Biomedical and Pharmacology Journal, 11(2), 751–757. https://doi.org/10.13005/bpj/1429
Jung, H.-S., Kim, H.-C., Hur, B., Kim, K.-H., Son, K., & Park, J.-K. (2009). Effect of restoration type on the stress distribution of endodontically treated maxillary premolars; Three-dimensional finite element study. Journal of Korean Academy of Conservative Dentistry, 34(1), 8. https://doi.org/10.5395/jkacd.2009.34.1.008
Kaladevi, M., & Balasubramaniam, R. (2020). Biomechanics in restorative dentistry. ~ 251 ~ International Journal of Applied Dental Sciences, 6(2), 251–256. www.oraljournal.com
Kandil, M., & Sherief, D. (2021). Marginal Adaptation, Compressive Strength, Water Sorption, Solubility and Ion Release of a Claimed Bioactive Restorative Material. Egyptian Dental Journal, 67(1), 547–561. https://doi.org/10.21608/edj.2020.42560.1256
Karaköy, H., Gönder, H. Y., Mohammadi, R., Harmankaya, A., Tunçdemir, M. T., & Göktolga, E. G. (2024). Examination of stress distribution on Class I cavity restored using amalgam and bulk-fill composite: A 3D finite element stress analysis. International Dental Research, 14(Suppl. 1), 98–105. https://doi.org/10.5577/indentres.570
Kikuchi, L. N. T., Freitas, S. R. M., Amorim, A. F., Delechiave, G., Catalani, L. H., Braga, R. R., Moreira, M. S., Boaro, L. C. C., & Gonçalves, F. (2022). Effects of the crosslinking of chitosan/DCPA particles in the antimicrobial and mechanical properties of dental restorative composites. Dental Materials, 38(9), 1482–1491. https://doi.org/10.1016/j.dental.2022.06.024
Kim, J.-S., & Shin, D.-H. (2013). Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restorative Dentistry & Endodontics, 38(1), 36. https://doi.org/10.5395/rde.2013.38.1.36
Machiulskiene, V., Campus, G., Carvalho, J. C., Dige, I., Ekstrand, K. R., Jablonski-Momeni, A., Maltz, M., Manton, D. J., Martignon, S., Martinez-Mier, E. A., Pitts, N. B., Schulte, A. G., Splieth, C. H., Tenuta, L. M. A., Ferreira Zandona, A., & Nyvad, B. (2020). Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. In Caries Research (Vol. 54, Issue 1, pp. 7–14). S. Karger AG. https://doi.org/10.1159/000503309
Magne, P. (2007). Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dental Materials, 23(5), 539–548. https://doi.org/10.1016/j.dental.2006.03.013
Merchantara, B., Abidin, T., Agusnar, H., & Gani, B. A. (2022). Influence of the Nanoparticles Chitosan High Molecular on the Degradation of Nanofill and Nanohybrid Composite Resins inVarious pH Saliva. In International Journal of Innovative Science and Research Technology (Vol. 7, Issue 7). www.ijisrt.com464
Mohammadi, R., Alkurt Kaplan, S., Harmankaya, A., & Gönder, H. Y. (2025). Investigation of Stress Distribution and Fatigue Performance in Restored Teeth Using Different Thicknesses of Adhesive Materials and Different Restorative Materials: 3D Finite Element Analysis (FEM). Materials, 18(16). https://doi.org/10.3390/ma18163888
Nedeljkovic, I., De Munck, J., Vanloy, A., Declerck, D., Lambrechts, P., Peumans, M., Teughels, W., Van Meerbeek, B., & Van Landuyt, K. L. (2020). Secondary caries: prevalence, characteristics, and approach. Clinical Oral Investigations, 24(2), 683–691. https://doi.org/10.1007/s00784-019-02894-0
Nedeljkovic, I., Teughels, W., De Munck, J., Van Meerbeek, B., & Van Landuyt, K. L. (2015). Is secondary caries with composites a material-based problem? In Dental Materials (Vol. 31, Issue 11, pp. e247–e277). Elsevier Inc. https://doi.org/10.1016/j.dental.2015.09.001
Nikam, D., & Milani, A. S. (2022). Effect of fiber orientation on the stresses generated in dental crowns made of glass fiber composites. Composite Structures, 279. https://doi.org/10.1016/j.compstruct.2021.114790
Ouldyerou, A., Mehboob, H., Mehboob, A., Merdji, A., Aminallah, L., Mukdadi, O. M., Barsoum, I., & Junaedi, H. (2023). Biomechanical performance of resin composite on dental tissue restoration: A finite element analysis. PLoS ONE, 18(12 December). https://doi.org/10.1371/journal.pone.0295582
Prabhakar, A., & Musani, I. (2010). Biomechanical Stress Analysis of Mandibular First Permanent Molar; Restored with Amalgam and Composite Resin: A Computerized Finite Element Study. International Journal of Clinical Pediatric Dentistry, 3(1), 5–14. https://doi.org/10.5005/jp-journals-10005-1047
Randolph, L. D., Palin, W. M., Leloup, G., & Leprince, J. G. (2016). Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dental Materials, 32(12), 1586–1599. https://doi.org/10.1016/j.dental.2016.09.034
Ravandi, R., Zeinali Heris, S., Hemmati, S., Aghazadeh, M., Davaran, S., & Abdyazdani, N. (2024). Effects of chitosan and TiO2 nanoparticles on the antibacterial property and ability to self-healing of cracks and retrieve mechanical characteristics of dental composites. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27734
Ritter, A., Boushell, L. W., & Walter, R. (2018). Sturdevant’s Art and Science of Operative Dentistry - 7th Edition (2018).
Riva, Y. R., & Rahman, S. F. (2019). Dental composite resin: A review. AIP Conference Proceedings, 2193. https://doi.org/10.1063/1.5139331
Rodrigues, M. de P., Soares, P. B. F., Gomes, M. A. B., Pereira, R. A., Tantbirojn, D., Versluis, A., & Soares, C. J. (2020). Direct resin composite restoration of endodontically-treated permanent molars in adolescents: Bite force and patient-specific finite element analysis. Journal of Applied Oral Science, 28, 1–11. https://doi.org/10.1590/1678-7757-2019-0544
Rohani, B. (2019). Oral manifestations in patients with diabetes mellitus. World Journal of Diabetes, 10(9), 485–489. https://doi.org/10.4239/wjd.v10.i9.485
Scotti, N., Comba, A., Gambino, A., Paolino, D. S., Alovisi, M., Pasqualini, D., & Berutti, E. (2014). Microleakage at enamel and dentin margins with a bulk fills flowable resin. European Journal of Dentistry, 8(1), 1–8. https://doi.org/10.4103/1305-7456.126230
Sender, R. S., & Strait, D. S. (2023). The biomechanics of tooth strength: testing the utility of simple models for predicting fracture in geometrically complex teeth. Journal of the Royal Society Interface, 20(203). https://doi.org/10.1098/rsif.2023.0195
Sevinç, B. A., & Hanley, L. (2010). Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 94(1), 22–31. https://doi.org/10.1002/jbm.b.31620
Shah, P. K., & Stansbury, J. W. (2014). Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dental Materials, 30(5), 586–593. https://doi.org/10.1016/j.dental.2014.02.015
Stenhagen, I. S. R., Rukke, H. V., Dragland, I. S., & Kopperud, H. M. (2019). Effect of methacrylated chitosan incorporated in experimental composite and adhesive on mechanical properties and biofilm formation. European Journal of Oral Sciences, 127(1), 81–88. https://doi.org/10.1111/eos.12584
Su, N. Y., Wang, Y. H., & Chang, Y. C. (2023). A registry-based study of tooth-colored restorative materials for decayed teeth in Taiwan. Journal of Dental Sciences, 18(3), 1235–1242. https://doi.org/10.1016/j.jds.2023.01.033
Sun, J., Jiang, J., Huang, Z., Ma, X., Shen, T., Pan, J., & Bi, Z. (2025). Smart biomaterials in restorative dentistry: Recent advances and future perspectives. In Materials Today Bio (Vol. 35). Elsevier B.V. https://doi.org/10.1016/j.mtbio.2025.102349
Sun, T., Shao, B., & Liu, Z. (2021). Effects of the lining material, thickness and coverage on residual stress of class II molar restorations by multilayer technique. Computer Methods and Programs in Biomedicine, 202. https://doi.org/10.1016/j.cmpb.2021.105995
Száva, D. T., Száva, I., Vlase, S., & Száva, A. (2023). Experimental Investigations of the Dental Filling Materials: Establishing Elastic Moduli and Poisson’s Ratios. In Materials (Vol. 16, Issue 9). MDPI. https://doi.org/10.3390/ma16093456
Tanaka, C. B., Lopes, D. P., Kikuchi, L. N. T., Moreira, M. S., Catalani, L. H., Braga, R. R., Kruzic, J. J., & Gonçalves, F. (2020). Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dental Materials, 36(4), 551–559. https://doi.org/10.1016/j.dental.2020.02.004
Tseng, P. C., Chuang, S. F., Kaisarly, D., & Kunzelmann, K. H. (2023). Simulating the shrinkage-induced interfacial damage around Class I composite resin restorations with damage mechanics. Dental Materials, 39(5), 513–521. https://doi.org/10.1016/j.dental.2023.03.020
Tsujimoto, A., Barkmeier, W. W., Fischer, N. G., Nojiri, K., Nagura, Y., Takamizawa, T., Latta, M. A., & Miazaki, M. (2018). Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. In Japanese Dental Science Review (Vol. 54, Issue 2, pp. 76–87). Elsevier Ltd. https://doi.org/10.1016/j.jdsr.2017.11.002
Tuncdemir, M., Yeşilyurt, N., & Arıkan, M. (2021). Comparison of the Stress Distribution in Class I and Class II Amalgam and Bulk-Fill Composite Restorations Using CAD-FEM Modeling. The International Journal of Periodontics & Restorative Dentistry, 41(1), e1–e9. https://doi.org/10.11607/prd.5024
Vianna, A. L. S. de V., Do Prado, C. J., Bicalho, A. A., Pereira, R. A. da S., Das Neves, F. D., & Soares, C. J. (2018). Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. Journal of Applied Oral Science, 26. https://doi.org/10.1590/1678-7757-2018-0004
World Health Organization. (2022). Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030. World Health Organization. http://apps.who.int/bookorders. DOI: 10.59596/WHO-NMH-PND-22.1
Wu, F., Su, X., Shi, Y., Bai, J., Feng, J., Sun, X., Wang, X., Wang, H., Wen, J., & Kang, J. (2024). Comparison of the biomechanical effects of the post-core crown, endocrown and inlay crown after deep margin elevation and its clinical significance. BMC Oral Health, 24(1). https://doi.org/10.1186/s12903-024-04604-z
Yazdani, N., Ashrafi, H., Özcan, M., Nekoueimehr, N., Kholdi, M., & Farzad, A. (2022). Mechanical and Thermal Stress Analysis of Cervical Resin Composite Restorations Containing Different Ratios of Zinc Oxide Nanoparticles: A 3D Finite Element Study. Materials, 15(16). https://doi.org/10.3390/ma15165504
Zheng, Z., Sun, J., Jiang, L., Wu, Y., He, J., Ruan, W., & Yan, W. (2022). Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis. BMC Oral Health, 22(1). https://doi.org/10.1186/s12903-022-02063-y
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Andina Widyastuti et al.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submit an Article Tracking Your Submission
Editorial Policies Publishing System Copyright Notice Site Map Journal History Visitor Statistics Abstracting & Indexing








