The role of bio-additive and attractive magnetic fields on flame behavior and hydrocarbon gas in palm oil droplets combustion
Dony Perdana(1*), Mochammad Khoirul Rosidin(2), Wahyu Dwi Purnama(3)
(1) Universitas Maarif Hasyim Latif
(2) Universitas Maarif Hasyim Latif
(3) Universitas Maarif Hasyim Latif
(*) Corresponding Author
Abstract
The availability of fossil fuels is increasingly diminishing, while the global energy demand continues to rise. Alternative energy sources currently available from various vegetable oils include jatropha, palm, kapok seed, coconut, and cottonseed oil as substitutes for fossil fuels. When used directly in diesel engines, these oils can lead to several issues, including high viscosity and elevated flash points, which hinder proper fuel combustion and result in carbon deposits within the combustion chamber. Several solutions have been proposed to address these issues, including blending vegetable oils with diesel fuel at various ratios, preheating the vegetable oils, mixing them with additives, and utilizing exhaust gas recirculation and combustion chamber modification. This study investigates the role of bio-additive and applied magnetic fields in influencing flame characteristics and hydrocarbon gas emissions during palm oil droplet combustion. The experimental procedure involved direct testing on palm oil by incorporating a 3% eucalyptus oil-based bio additive and applying an attractive magnetic field (U-S), with droplet diameters ranging between 0.3-0.4 mm. Thermocouples diameter of 0.12 mm were placed on both sides of the magnet with a magnetic field intensity of 1.1 Tesla, and heating wires as the heat source were positioned beneath the thermocouples. The study found that combining eucalyptus oil bio-additive and an attractive magnetic field (U-S) resulted in the shortest flame evolution time of 1760 ms. The flame height and hydrocarbon gas concentration also reached their lowest values at 5.74 mm and 296 ppm, respectively. Meanwhile, the same treatment produced of highest temperature of 846.5 °C compared to other experimental conditions.
Keywords
Full Text:
PDFReferences
Akram, N., Sadri, R., Kazi, S. N., Zubir, M. N. M., Ridha, M., Ahmed, W., Soudagar, M. E. M., & Arzpeyma, M. (2020). A comprehensive review on nanofluid operated solar flat plate collectors. Journal of Thermal Analysis and Calorimetry (Vol. 139, Issue 2, pp. 1309–1343). Springer Science and Business Media B.V. https://doi.org/10.1007/s10973-019-08514-z
Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus (Vol. 28, pp. 127–139). Elsevier Ltd. https://doi.org/10.1016/j.ref.2018.12.006
Chen, A. F., Akmal Adzmi, M., Adam, A., Othman, M. F., Kamaruzzaman, M. K., & Mrwan, A. G. (2018). Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Conversion and Management, 171, 461–477. https://doi.org/10.1016/j.enconman.2018.06.004
Dobrzyńska, E., Szewczyńska, M., Pośniak, M., Szczotka, A., Puchałka, B., & Woodburn, J. (2020). Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environmental Pollution, 259. https://doi.org/10.1016/j.envpol.2019.113772
Jaya, D., Litaay, R. M., Bagus, R. A., Widayati, W., & Syahri, D. M. (2022). Pengaruh penambahan zat aditf diethyl ether terhadap pembuatan biodiesel (B50) Influence of dietyl ether on the mixture of biodiesel B50. Eksergi, 19(1), 10–14. https://doi.org/10.31315/e.v19i1.6387
Khan, H., Soudagar, M. E. M., Kumar, R. H., Safaei, M. R., Farooq, M., Khidmatgar, A., Banapurmath, N. R., Farade, R. A., Abbas, M. M., Afzal, A., Ahmed, W., Goodarzi, M., & Taqui, S. N. (2020). Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel-Nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry, 12(6). https://doi.org/10.3390/SYM12060961
Kumar, S., Dinesha, P., & Bran, I. (2017). Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. Energy, 140, 98–105. https://doi.org/10.1016/j.energy.2017.08.079
Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nano particle additive. Energy, 185, 1163–1173. https://doi.org/10.1016/j.energy.2019.07.124
Marlina, E., Basjir, M., Ichiyanagi, M., Suzuki, T., Gotama, G. J., & Anggono, W. (2020). The role of eucalyptus oil in crude palm oil as biodiesel fuel. Automotive Experiences, 3(1), 33–38. https://doi.org/10.31603/ae.v3i1.3257
Mujtaba, M. A., Kalam, M. A., Masjuki, H. H., Gul, M., Soudagar, M. E. M., Ong, H. C., Ahmed, W., Atabani, A. E., Razzaq, L., & Yusoff, M. (2020). Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements. Fuel, 279. https://doi.org/10.1016/j.fuel.2020.118434
Mujtaba, M. A., Masjuki, H. H., Kalam, M. A., Noor, F., Farooq, M., Ong, H. C., Gul, M., Soudagar, M. E. M., Bashir, S., Fattah, I. M. R., & Razzaq, L. (2020). Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies, 13(13). https://doi.org/10.3390/en13133375
Musyaroh, M. (2016). Steam destillation eucalyptus trees to the variation of operating pressure and treatment materialsto optimize sineol content in eucalyptus oil. Jurnal Teknik Kimia, 10(2), 37–42. https://doi.org/10.33005/tekkim.v10i2.536.
Örs, I., Sarıkoç, S., Atabani, A. E., Ünalan, S., & Akansu, S. O. (2018). The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel, 234, 177–188. https://doi.org/10.1016/j.fuel.2018.07.024
Perdana, D., Wardana, I. N. G., Yuliati, L., & Hamidi, N. (2018). The role of fatty acid structure in various pure vegetable oils on flame characteristics and stability behavior for industrial furnace. Eastern-European Journal of Enterprise Technologies, 5(8–95), 65–75. https://doi.org/10.15587/1729-4061.2018.144243
Perdana, D., Yuliati, L., Hamidi, N., & Wardana, I. N. G. (2020). The Role of Magnetic Field Orientation in Vegetable Oil Premixed Combustion. Journal of Combustion, 2020. https://doi.org/10.1155/2020/2145353
Perdana, D. (2023). The experimental of impact of additional magnetic fields and nitrogen pressure on olive oil droplet combustion. Indonesian Journal of Applied Research, 4(1), 1–10. https://doi.org/10.30997/ijar.v4i1.280.
Perdana, D., Setiyawan, D. G., & Choifin, M. (2023). Studi eksperimental karakteristik nyala api pembakaran premix minyak kapuk dengan berbagai orientasi medan magnet. Scientific Journal of Mechanical Engineering Kinematika, 8(1), 63–73. https://doi.org/10.20527/sjmekinematika.v8i1.249.
Prabu, A. (2018). Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain Shams Engineering Journal, 9(4), 2343–2349. https://doi.org/10.1016/j.asej.2017.04.004
Putra, F. S., & Perdana, D. (2025). Perilaku api dan emisi pada pembakaran droplet biodiesel dicampur diethyl ether yang dipengaruhi medan magnet. Scientific Journal of Mechanical Engineering Kinematika, 10(1), 81–90. https://doi.org/10.20527/sjmekinematika.v10i1
Raju, V. D., Venu, H., Subramani, L., Kishore, P. S., Prasanna, P. L., & Kumar, D. V. (2020). An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel. Energy, 203. https://doi.org/10.1016/j.energy.2020.117821
Silitonga, A. S., Shamsuddin, A. H., Mahlia, T. M. I., Milano, J., Kusumo, F., Siswantoro, J., Dharma, S., Sebayang, A. H., Masjuki, H. H., & Ong, H. C. (2020). Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renewable Energy, 146, 1278–1291. https://doi.org/10.1016/j.renene.2019.07.065
Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., & Syed Thasthagir, M. H. (2018). Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renewable Energy, 116, 518–526. https://doi.org/10.1016/j.renene.2017.10.002
Soudagar, M. E. M., Afzal, A., & Kareemullah, M. (2024). Waste coconut oil methyl ester with and without additives as an alternative fuel in diesel engine at two different injection pressures. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 46(1), 8751–8769. https://doi.org/10.1080/15567036.2020.1769775
Taufik, M. A., & Perdana, D. (2024). Effect of mixture eucalyptus oil and magnetic fields on droplets combustion palm oil on flame behaviours and flue gas emissions. Journal Renewable Energy & Mechanics, 07(01), 1–11. https://doi.org/10.25299/rem.2024.14148
Winarko, W. A., Ilminnafik, N., Kustanto, M. N., & Perdana, D. (2022). Peran Orientasi Medan Magnet Pada Karakteristik Nyala Api Droplet Calophyllum Inophyllum. Jurnal Keteknikan Pertanian, 10(3), 215–225. https://doi.org/10.19028/jtep.010.3.215-225
Zhen, X., Wang, Y., & Liu, D. (2020). Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renewable Energy (Vol. 147, pp. 2494–2521). Elsevier Ltd. https://doi.org/10.1016/j.renene.2019.10.119
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dony Perdana et al.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submit an Article Tracking Your Submission
Editorial Policies Publishing System Copyright Notice Site Map Journal History Visitor Statistics Abstracting & Indexing









