Numerical simulation of layer thickness optimization in perovskite solar cells for enhanced power conversion efficiency
Soni Prayogi(1*)
(1) Universitas Pertamina
(*) Corresponding Author
Abstract
Perovskite solar cells (PSCs) have gained significant attention due to their remarkable power conversion efficiency (PCE) and potential for low-cost, scalable production. Despite this progress, further efficiency enhancement requires systematic optimization of device architecture, particularly the thickness of functional layers. This study presents a numerical simulation using the OGMANANO simulation platform to investigate the influence of layer thickness variation, specifically in the perovskite absorber layer, electron transport layer (ETL), and hole transport layer (HTL), on the performance of planar PSCs. The simulation models a typical n-i-p structured device under standard AM1.5G illumination, evaluating key photovoltaic parameters such as short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and overall PCE. Results indicate that the optimal absorber thickness lies in the 500–600 nm range, with a peak efficiency of 22.7% achieved at 550 nm. Furthermore, ETL and HTL show optimal performance at 50 and 60 nm, respectively, minimizing recombination losses and enhancing charge transport. The study concludes that precise layer thickness control is critical for maximizing PSC efficiency. The use of OGMANANO proved effective in simulating multilayer perovskite structures, providing a reliable tool for pre-fabrication optimization in advanced solar cell design.
Keywords
Full Text:
PDFReferences
Abd Mutalib, M., Aziz, F., Ismail, A. F., Wan Salleh, W. N., Yusof, N., Jaafar, J., Soga, T., Sahdan, M. Z., & Ahmad Ludin, N. (2018). Towards high performance perovskite solar cells: A review of morphological control and HTM development. Applied Materials Today, 13, 69–82. https://doi.org/10.1016/j.apmt.2018.08.006
Akiyama, Y., Kasai, Y., Iwata, M., Takahashi, E., Sato, F., & Murakawa, M. (2015). Anomaly Detection of Solar Power Generation Systems Based on the Normalization of the Amount of Generated Electricity. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, 294–301. https://doi.org/10.1109/AINA.2015.198
Azmer, M. I., Aziz, F., Ahmad, Z., Raza, E., Najeeb, M. A., Fatima, N., Bawazeer, T. M., Alsoufi, M. S., Shakoor, R. A., & Sulaiman, K. (2017). Compositional engineering of VOPcPhO-TiO2 nano-composite to reduce the absolute threshold value of humidity sensors. Talanta, 174, 279–284. https://doi.org/10.1016/j.talanta.2017.06.016
Bhattarai, S., Pandey, R., Madan, J., Ahmed, F., & Shabnam, S. (2022). Performance improvement approach of all inorganic perovskite solar cell with numerical simulation. Materials Today Communications, 33, 104364. https://doi.org/10.1016/j.mtcomm.2022.104364
Chilipi, R., Al Sayari, N., & Alsawalhi, J. Y. (2020). Control of Single-Phase Solar Power Generation System With Universal Active Power Filter Capabilities Using Least Mean Mixed-Norm (LMMN)-Based Adaptive Filtering Method. IEEE Transactions on Sustainable Energy, 11(2), 879–893. https://doi.org/10.1109/TSTE.2019.2911852
Darminto, D., Asih, R., Priyanto, B., Baqiya, M. A., Ardiani, I. S., Nadiyah, K., Laila, A. Z., Prayogi, S., Tunmee, S., Nakajima, H., Fauzi, A. D., Naradipa, M. A., Diao, C., & Rusydi, A. (2023). Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devices. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-31552-5
Donkata, K. A., Beltako, K., Dzagli, M. M., & Mohou, M. A. (2025). Numerical simulation and optimization of highly efficient inorganic lead-free perovskite solar cells using SCAPS-1D. Scientific African, e02841. https://doi.org/10.1016/j.sciaf.2025.e02841
Islam, S., Hossain, M. K., Uddin, M. S., Prabhu, P., Ballal, S., Vinay, K. P., Kavitha, V., Samal, S. K., Alhuthali, A. M. S., Amami, M., Datta, A. K., Toki, G. F. I., & Haldhar, R. (2025). A numerical investigation to design and performance optimization of lead-free Cs2TiCl6 based perovskite solar cells with different charge transport layers. Scientific Reports, 15(1), 20768. https://doi.org/10.1038/s41598-025-06820-1
Ji, T., Wu, Z., Xiang, P., Lu, Y., Liu, S., Tang, R., Wang, Y., & Xia, Y. (2025). High-Efficiency PbS Quantum Dots Infrared Solar Cells via Numerical Simulation and Experimental Optimization. Advanced Electronic Materials, 11(8), 2400784. https://doi.org/10.1002/aelm.202400784
Khalaf, G. M. G., Li, M., Yan, J., Zhao, X., Ma, T., Hsu, H.-Y., & Song, H. (2023). PbS Colloidal Quantum Dots Infrared Solar Cells: Defect Information and Passivation Strategies. Small Science, 3(11), 2300062. https://doi.org/10.1002/smsc.202300062
Liu, S., Zhang, C., Li, S., Xia, Y., Wang, K., Xiong, K., Tang, H., Lian, L., Liu, X., Li, M.-Y., Tan, M., Gao, L., Niu, G., Liu, H., Song, H., Zhang, D., Gao, J., Lan, X., Wang, K., … Zhang, J. (2021). Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter-Dot Coupling and Efficient Passivation. Advanced Functional Materials, 31(9), 2006864. https://doi.org/10.1002/adfm.202006864
Liu, W., Yao, R., Zhou, T., Yao, Q., Feng, Y., & Li, X. (2024). Surface defect passivation by copper incorporation for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 265, 112630. https://doi.org/10.1016/j.solmat.2023.112630
Ma, Z., Mahmoud, H. A., Liu, J., & Awwad, E. M. (2024). Enhancing perovskite solar cell performance with a novel theoretical method and artificial neural networks. Solar Energy, 267, 112249. https://doi.org/10.1016/j.solener.2023.112249
Marí Soucase, B., Baig, F., Hameed Khattak, Y., Vega, E., & Mollar, M. (2022). Numerical analysis for efficiency limits of experimental perovskite solar cell. Solar Energy, 235, 200–208. https://doi.org/10.1016/j.solener.2022.02.051
Mathur, A. K., Teja S, C., & Yemula, P. K. (2018). Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation. 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 611–615. https://doi.org/10.1109/ISGT-Asia.2018.8467916
Meshram, S., Agnihotri, G., & Gupta, S. (2012). The steady state analysis of Z-Source Inverter based Solar Power Generation System. 2012 IEEE 5th India International Conference on Power Electronics (IICPE), 1–6. https://doi.org/10.1109/IICPE.2012.6450366
Meyer, E. L., Vulindlela, I., Paca, A., Agoro, M. A., & Rono, N. (2025). Numerical Simulation and Hole Transport Layers Optimization of a Lead Sulfide-Based Solar Cell with a Power Conversion Efficiency of Above 22%. Coatings, 15(3), Article 3. https://doi.org/10.3390/coatings15030255
Nair, S. S., Thakur, P., Wan, F., Trukhanov, A. V., Panina, L. V., & Thakur, A. (2023). Performance evaluation and the optimization of an inverted photo-voltaic cell with lead-free double perovskite material and inorganic transport layer materials. Solar Energy, 262, 111823. https://doi.org/10.1016/j.solener.2023.111823
Paz Totolhua, E., Carrillo López, J., Hernández de la Luz, J. Á. D., Monfil Leyva, K., Flores-Méndez, J., Piñón Reyes, A. C., Hernández Simón, Z. J., & Luna López, J. A. (2025). Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function. Materials, 18(7), Article 7. https://doi.org/10.3390/ma18071601
Phung, N., Zhang, D., van Helvoirt, C., Verhage, M., Verheijen, M., Zardetto, V., Bens, F., Weijtens, C. H. L., Geerligs, L. J. (Bart), Kessels, W. M. M., Macco, B., & Creatore, M. (2023). Atomic layer deposition of NiO applied in a monolithic perovskite/PERC tandem cell. Solar Energy Materials and Solar Cells, 261, 112498. https://doi.org/10.1016/j.solmat.2023.112498
Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618. https://doi.org/10.1007/s10854-021-05477-6
Prayogi, S., Ristiani, D., & Darminto, D. (2025). Photocurrent and electronic structure analysis of a-Si: H intrinsic layer photodiodes. Journal of Materials Science: Materials in Electronics, 36(19), 1188. https://doi.org/10.1007/s10854-025-15260-6
Prayogi, S., & Wibowo, W. K. (2025). Visible light communication for rapid monitoring of environmental changes using thin film solar cells. TELKOMNIKA (Telecommunication Computing Electronics and Control), 23(1), Article 1. https://doi.org/10.12928/telkomnika.v23i1.26375
Raza, E., Asif, M., Aziz, F., Azmer, M. I., Malik, H. A., Teh, C.-H., Najeeb, M. A., Zafar, Q., Ahmad, Z., Wahab, F., Daik, R., Sarih, N. M., Supangat, A., & Sulaiman, K. (2016). Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT2. Sensors and Actuators B: Chemical, 235, 146–153. https://doi.org/10.1016/j.snb.2016.05.071
Singh, C. B., Bhattacharya, S., Prayogi, S., Patel, U. S., Bhargav, P. B., & Ahmed, N. (2024). A new look at an explanation of band gap of PECVD grown a-Si:H thin films using absorption spectra, spectroscopic ellipsometry, Raman, and FTIR spectrosopy. Optical Materials, 154, 115809. https://doi.org/10.1016/j.optmat.2024.115809
Thakur, A., Thakur, P., Alex, T., Krishnia, L., & Nair, S. S. (2022). Optimization based on computational analysis of lead-free inverted planar photo-voltaic device structure using halide based double perovskite material. Materials Today: Proceedings, 71, 312–316. https://doi.org/10.1016/j.matpr.2022.09.219
Tseng, C.-C., Chen, L.-C., Chang, L.-B., Wu, G.-M., Feng, W.-S., Jeng, M.-J., Chen, D. W., & Lee, K.-L. (2020). Cu2O-HTM/SiO2-ETM assisted for synthesis engineering improving efficiency and stability with heterojunction planar perovskite thin-film solar cells. Solar Energy, 204, 270–279. https://doi.org/10.1016/j.solener.2020.04.077
Wu, J.-C., & Chou, C.-W. (2014). A Solar Power Generation System With a Seven-Level Inverter. IEEE Transactions on Power Electronics, 29(7), 3454–3462. https://doi.org/10.1109/TPEL.2013.2279880
Zheng, S., Wang, Y., Jia, D., Tian, L., Chen, J., Shan, L., Dong, L., & Zhang, X. (2021). Strong Coupling of Colloidal Quantum Dots via Self-Assemble Passivation for Efficient Infrared Solar Cells. Advanced Materials Interfaces, 8(13), 2100489. https://doi.org/10.1002/admi.202100489
Zhou, R., Xu, J., Luo, P., Hu, L., Pan, X., Xu, J., Jiang, Y., & Wang, L. (2021). Near-Infrared Photoactive Semiconductor Quantum Dots for Solar Cells. Advanced Energy Materials, 11(40), 2101923. https://doi.org/10.1002/aenm.202101923
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 soni prayogi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submit an Article Tracking Your Submission
Editorial Policies Publishing System Copyright Notice Site Map Journal History Visitor Statistics Abstracting & Indexing









