Computational screening of boswellic acid for its antibacterial activity against acne-causing bacteria via molecular docking

https://doi.org/10.22146/teknosains.106278

Dedi Damhuri(1*), Ietje Wientarsih(2), Rini Madyastuti Purwono(3), Agustin Indrawati(4), Asri Rizky(5), Jessica Anggun Safitri(6), Ahmad Syarifuddin(7)

(1) Universitas Jambi
(2) IPB University
(3) IPB University
(4) IPB University
(5) Universitas Jambi
(6) Universitas Jambi
(7) Universitas Jambi
(*) Corresponding Author

Abstract


Acne vulgaris (AV) is a common inflammatory-skin disorder associated with bacterial infections, particularly Cutibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis. The rising resistance to conventional antibiotics has prompted the exploration of natural compounds such as boswellic acid, which is known for its antibacterial potential. This study aimed to evaluate the antibacterial activity of boswellic acid using an in-silico approach through molecular docking against several essential bacterial target proteins implicated in acne pathogenesis. The boswellic acid ligand was obtained from the PubChem database, while the three-dimensional structures of the target proteins were retrieved from the RCSB Protein Data Bank. Blind docking was performed using AutoDock Tools version 1.5.7 and AutoDock Vina, followed by interaction analysis using Discovery Studio Visualizer and Visual Molecular Dynamics (VMD). Nine bacterial proteins involved in vital cellular processes such as metabolism, protein synthesis, biofilm formation, and DNA replication were selected, including transcriptional regulator TcaR, penicillin-binding proteins (PBPs), tyrosyl-tRNA synthetase (TyrRS), 3-ketoacyl-ACP synthase III (KAS III), CRISPR-associated protein, DNA gyrase, transcriptional regulator MarR, methylmalonyl-CoA epimerase, and accumulation-associated protein (Aap). The docking results demonstrated that all target proteins exhibited negative binding energy values (< 0), indicating thermodynamically stable and spontaneous interactions. Among these, TcaR displayed the highest binding affinity with a binding energy of −10.2 kcal/mol and formed nine conventional hydrogen bonds, reflecting a particular and stable interaction. Key interacting residues included Gln: B61, HisA:42, AsnA:20, AsnB:17, and Arg1:110. In contrast, the Aap protein formed only one covalent bond, indicating the weakest interaction. These findings suggest that boswellic acid effectively inhibits key bacterial proteins, particularly those involved in transcriptional regulation and biofilm development. Therefore, boswellic acid holds significant potential as a safe and effective topical antibacterial agent for further growth in biomedical engineering-based formulations.


Keywords


boswellic acid; molecular docking; anti-inflammatory; in silico; acne vulgaris

Full Text:

PDF


References

Adelina, R. (2013). Uji Molecular Docking Annomuricin E dan Muricapentocin pada Aktivitas Antiproliferasi (Molecular Docking Studies of Annomuricin E and Muricapentocin on Antiproliferation Activity). Jurnal Ilmu Kefarmasian Indonesia, V. 12, n. 1, p. 32-36, apr. 2014. ISSN 2614-6495.

Agak, G.W., Qin, M., Nobe, J., Kim, M.H., Krutzik, S.R., Tristan, G.R., & Elashoff, D. (2014). Propionibacterium acnes induce an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. Journal of Investigative Dermatology, 134(2):366–373. DOI: 10.1038/jid.2013.334.

Ayub, M.A., Hanif, M.A., Sarfraz, R.A. & Shahid, M. (2018). Biological activity of boswellia serrata roxb. Oleo gum resin essential oil: Effects of extraction by supercritical carbon dioxide and traditional methods. International Journal of Food Properties, 21(1):808–820. DOI: 10.1080/10942912.2018.1439957.

Azimi, H., Fallah-Tafti, M., Khakshur, A.A. & Abdollahi, M. (2012). A review of phytotherapy of acne vulgaris: Perspective of new pharmacological treatments. Fitoterapia, 83(8):1306-17. DOI: 10.1016/j.fitote.2012.03.026.

Chang, Y.-M., Jeng, W.-Y., Ko, T.-P., Yeh, Y.-J., K-M Chen, C. & H-J Wang. (2010). Structural study of TcaR and its complexes with multiple antibiotics from Staphylococcus epidermidis. Proc Natl Acad Sci USA, 107(19):8617-22. DOI: 10.1073/pnas.0913302107.

Dréno, B., Pécastaings, S., Corvec, S., Veraldi, S., Khammari, A. & Roques, C. (2018). Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. Journal of the European Academy of Dermatology and Venereology, 35(1):5-14. DOI: 10.1111/jdv.15043.

Farmasi, M., Farmakologi, D., Pratama, A.A., Rifai, Y. & Marzuki, A. (2017). Docking Molekuler Senyawa 5,5’-Dibromometilsesamin. Original Article MFF, 21(3):67–69. DOI: 10.20956/mff.v.

Feig, M., Onufriev, A., Lee, M.S., Im, W., Case, D.A. & Iii, C.L.B. (2004). Performance Comparison of Generalized Born and Poisson Methods in the Calculation of Electrostatic Solvation Energies for Protein Structures. Journal of computational chemistry, 25(2):265-284. DOI: 10.1002/jcc.10378.

Han, Y., Hawkins, A.S., Adams, M.W.W. & Kelly, R.M. (2012). Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) convert (S)-methylmalonyl-coenzyme a (CoA) to Succinyl-coA in the Metallosphaera sedula 3-Hydroxypropionate/4-hydroxybutyrate cycle. Applied and Environmental Microbiology, 78(17): 6194–6202. DOI: 10.1128/AEM.01312-12.

Khan, T., Sankhe, K., Suvarna, V., Sherje, A., Patel, K & Dravyakar, B. (2018). DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine and Pharmacotherapy, 25(2):265-284. DOI: 10.1016/j.biopha.2018.04.021.

Kim, H.J., Lee, B.J. & Kwon, A.R. (2020). The grease trap: Uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase. Journal of Lipid Research, 61(5):722–733. DOI: 10.1194/jlr.RA119000279.

Kim, J. (2005). Review of the innate immune response in acne vulgaris: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 211(3):193-198. DOI: 10.1159/000087011.

Lintner, N.G., Frankel, K.A., Tsutakawa, S.E., Alsbury, D.L., Copié, V., Young, M.J., & Tainer, J.A. (2011). The structure of the CRISPR-associated protein csa3 provides insight into the regulation of the CRISPR/Cas system. Journal of Molecular Biology, 405(4):939–955. DOI: 10.1016/j.jmb.2010.11.019.

Liu, P.-F., Hsieh, Y.-D., Lin, Y.-C., Two, A., Shu, C.-W. & Huang, C.-M. (2015). Propionibacterium acnes in the Pathogenesis and Immunotherapy of Acne Vulgaris. Current Drug Metabolism, 16(4):245-254. DOI: 10.2174/1389200216666150812124801.

Luliana, S. & Zahid, M. (2025). Effect Of Extraction, Ratio, And Solvent Concentration on Total Flavonoid Content and Antioxidant Activity of Singkel (Premna Serratifolia Linn.) Using Dpph Method. Jurnal Teknosains, 14(2):103-114. DOI: 10.22146/teknosains.100099.

Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. (2006). Penicillin binding proteins: Key players in bacterial cell cycle and drug resistance processes. FEMS Microbiology Reviews, 30(5):673-691. DOI: 10.1111/j.1574-6976.2006.00024.x.

Meins, J., Behnam, D. & Abdel-Tawab, M. (2018). Enhanced absorption of boswellic acids by a micellar solubilized delivery form of Boswellia extract. NFS Journal, 11(1):12–16. DOI: 10.1016/j.nfs.2018.04.001.

Pangastuti, A., Wulandari, A.M., Amin, A.Z. & Amin, M. (2016). Mengungkap Potensi Senyawa Alami dari Cabai (Capsicum annuum L) Sebagai Agen Anti-Autism Melalui Teknik Reverse Docking. Prosiding Semnas Hayati IV. Universitas Nusantara PGRI Kediri, 123-129.

Pharma, D. (2018). Investigation of Anti Acne Potentiality of Boswellia Serrata Roxb. Gum and Oil. Der Pharma Chemica, 10(1):139-143.

Purdy, S. & De Berker, D. (2010). Acne vulgaris. BMJ clinical evidence, 1714.

Schaeffer, C.R., Woods, K.M., Longo, G.M., Kiedrowski, M.R., Paharik, A.E., Büttner, H., & Christner, M. (2015). Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infection and Immunity, 83(1):214-226. DOI: 10.1128/IAI.02177-14.

Sinha, P., Srivastava, S., Mishra, N. & Yadav, N.P. (2014). New Perspectives on Antiacne Plant Drugs: Contribution to Modern Therapeutics. BioMed Research International, 2014(1), 301304. DOI: 10.1155/2014/301304.

Syahputra, G., Ambarsari, L. & Sumaryada, T. (2014). Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin Dan Analognya Sebagai Inhibitor Enzim12-Lipoksigenase. Jurnal Biofisika, 10(1): DOI: 10.13140/RG.2.2.30614.55363.

Takada, Y., Ichikawa, H., Badmaev, V. & Aggarwal, B.B. (2006). Acetyl-11-Keto-Boswellic Acid Potentiates Apoptosis, Inhibits Invasion, and Abolishes Osteoclastogenesis by Suppressing NF-B and NF-B-Regulated Gene Expression 1. The Journal of Immunology, 176(5):3127-314. DOI: 10.4049/jimmunol.176.5.3127.

Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., & Suzuki, K. (2004), Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. Journal of Medicinal Chemistry, 47(14): 3693–3696. DOI: 10.1021/jm030394f.



DOI: https://doi.org/10.22146/teknosains.106278

Article Metrics

Abstract views : 316 | views : 184

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Dedi Damhuri et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



 Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing