Production and characterization of lactic acid bacteria biofilms synthesized using tofu wastewater

https://doi.org/10.22146/teknosains.103083

Susmaya Atmandaru(1), Amalia Solichah(2), Endah Retnaningrum(3*)

(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Biofilms serve to protect microbes from environmental conditions. Biofilms produced by lactic acid bacteria (LAB) can even inhibit the growth of pathogens. Medium de Man Ragosa Sharpe (MRS) is a specific medium for LAB growth and biofilm formation; however, it is not effective on an industrial scale due to its high cost. Tofu wastewater serves as an alternative medium because it contains complete nutrients that support the formation of LAB biofilms. This study aimed to determine the effect of C and N formulation in tofu wastewater on the production and characterisation of biofilms produced by four Lactobacillus (LAB) strains, including Enterococcus casseliflavus F4IS5, E. casseliflavus F14IS5, and E. casseliflavus F14IS6. Glucose and ammonium sulfate were added to the tofu wastewater as carbon and nitrogen sources, respectively. The biofilm-forming ability of LAB was tested by the biofilm assay method. The LAB biofilm characteristics were tested based on adhesion, while the exopolysaccharide concentration, a component of the biofilm, was analysed using the dry weight method. The inhibitory activity of LAB biofilms against the growth of pathogenic bacteria, specifically Escherichia coli and Staphylococcus aureus, was tested using the microplate method. The highest LAB biofilm production was obtained from the E. casseliflavus F6IS4 isolate in a tofu wastewater medium supplemented with 2% glucose and 1% ammonium sulfate, with an incubation time of 48 hours. The biofilm produced was categorised as a strong biofilm, which also exhibited strong adhesion; the separate cells accounted for only 19.25%. Besides, the EPS production by the strain was 63.4%. The biofilm of E. casseliflavus F6IS4 in tofu wastewater, supplemented with 2% glucose and 1% ammonium sulfate, also exhibited the highest inhibitory activity against E. coli and S. aureus, at 2.7% and 2.1%, respectively.


Keywords


Inhibitory activity; adhesion; E. casseliflavus; E. coli; exopolysaccharide; S. aureus

Full Text:

PDF


References

Bastard, A., Coelho, C., Briandet, R., Canette, A., Gougeon, R., Alexandre, H., Guzzo, J., & Weidmann, S. (2016). Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine. Frontiers in Microbiology, 7, 1–14. https://doi.org/10.3389/fmicb.2016.00613.

Borges, S., Joana, S., & Paula, T. (2012). Survival and biofilm formation by group B. Streptococci in simulated vaginal fluid at different pHs. Antonie van Leeuwenhoek, 101(3), 677–82. https://doi.org/101:677-682. 10.1007/s10482-011-9666-y.

Czaczyk, K., & Myszka, K. (2007). Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial bioilm formation. Polish Journal of Environmental Study, 16(6),799–806

Faten, K., Ksontini, H., El, A., S., Ibn, S., K., S., Meftah, H., Latrache, H., & Hamdi, M. (2016). Lactobacillus plantarum: effect of a protective biofilm on the surface of olives during storage. Brazilian Journal of Microbiology, 47, 202–209. https://doi.org/10.1016/j.bjm.2015.11.028

Galie, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., & Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology. 9, 898. https://doi.org/10.3389/fmicb.2018.00898.

Garcia-Gonzalo, D., & Rafael, P. (2015). Influence of environmental factors on bacterial biofilm formation in the food industry: A Review. PostDoc Journal. 3, 3–13. https://doi.org/10.14304/SURYA.JPR.V3N6.2.

Giyatno, D., C., & Retnaningrum, E. (2020). Isolasi dan karakterisasi bakteri asam laktat penghasil eksopolisakarida dari buah kersen (Muntingia calabura L.). Jurnal Sains Dasar, 9(2), 42–49. https://doi.org/10.21831/jsd.v9i2.34523.

Gomez, N., C., Juan, M., P., R., Beatriz, X., V., Q., & Bernadette, D., G. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7 biofilms formation. Frontiers in Microbiology.7, 863. https://doi.org/10.3389/fmicb.2016.00863.

Hooshdar, P., Kermanshahi, R. K., Ghadam, P., & Khosravi-Darani, K. A., (2020). Review on production of exopolysaccharide and biofilm in probiotics like lactobacilli and methods of analysis. Biointerface Research in Applied Chemistry, 10(5), 6058–75. https://doi.org/10.33263/BRIAC105.60586075.

Hutajulu, I., B., E., Kali Kulla, P., D., & Retnaningrum, E. (2021). Diversity of lactic acid bacteria isolated during fermentation of indigenous cassava obtained from Sumba, East Nusa Tenggara, Indonesia. Biodiversitas, 22(7), 2561–2570. https://doi.org/10.13057/biodiv/d220703.

Kubota, H., Shouko, S., Nobuhiko, N., Hajime, T., & Hiroo, U. 2008. Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience and Bioengineering.106(4), 381–386. https://doi.org/10.1263/jbb.106.381

Kumar, L., M., Wan, Z., S., Rosfarizan, M., & Raha, A., R. (2017). Influence of biofilm-forming lactic acid bacteria against methicillin-resistant Staphylococcus aureus (MRSA S547). Asian Pasific Journal of Tropical Biomedicine.7(12), 1107–1115. https://doi.org/10.1016/j.apjtb.2017.10.013.

Liu, Z., Li, L., Fang, Z., F., Lee, Y., Zhao, J., Zhang, H., Chen, W., Li, H., & Lu, W. (2021). The biofilm-forming ability of six Bifidobacterium strains on grape seed flour. LWT - Food Science and Technology, 144, 111205. https://doi.org/10.1016/j. lwt.2021.111205.

Mahami, T., & Adu-Gyamfi, A. (2011). Biofilm-associated infections: public health implications. International Research Journal of Microbiology. 2(10), 375–381.

Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–69. https://doi.org/10.3934/MICROBIOL.2020027.

Olszewska, M. A., Nynca, A., & Białobrzewski, I. (2019). Biofilm formation by lactobacilli and resistance to stress treatments. International Journal of Food Science & Technology, 54(11), 3058–65. https://doi.org/10.1111/ijfs.14219.

Pannella, G., Lombardi, S. J., Coppola, F., Vergalito, F., Iorizzo, M., Succi, M., Tremonte, P., Iannini, C., Sorrentino, E., & Coppola, R. (2020). Effect of biofilm formation by lactobacillus plantarum on the malolactic fermentation in model wine. Foods, 9(6), 797. https://doi.org/10.3390/foods9060797.

Pattnaik, P., Grover, S., & Batish, V. K. (2005). Effect of environmental factors on production lichien, a chromosomally enconded bacteriocin like compound produced by Bifidobacterium licheniformis 26 L-10/3RA. Microbiological Research.160, 213–218.

Retnaningrum, E., Yossi, T., Nur’azizah, R., Sapalina, F. & Kulla, P. D. K. (2020). Characterization of a bacteriocin as biopreservative synthesized by indigenous lactic acid bacteria from dadih soya traditional product used in West Sumatra, Indonesia. Biodiversitas, 21(9), 4192–4198. https://doi.org/10.13057/biodiv/d210933.

Safitri, N., Titi, C., S., & Anja, M., D. (2016). Formula media pertumbuhan bakteri asam laktat Pediococcus pentosaceus menggunakan substrat whey tahu. Jurnal Sumberdaya Hayati. 2, 31–38. https://doi.org/10.29244/jsdh.2.2.31-38.

Siradje, A. L., Prijambada, I. D., & Retnaningrum, E. (2017). Biofilm formation of Pseudomonas geniculata (Wright, 1895) Chester, 1901 on three fungals species: relationship with incubation time and fungal diameter size. ICBS Conference Proceedings, KnE life Sciences. 28–35. https://doi.org/10.18502/kls.v3i4.684.

Speranza, B., Liso, A., Russo, V., & Corbo, M. R. (2020). Evaluation of the potential of biofilm formation of bifidobacterium longum subsp. Infantis and lactobacillus reuteri as competitive biocontrol agents against pathogenic and food spoilage bacteria. Microorganisms, 8(2), 77. https://doi.org/10.3390/microorganisms8020177.

Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y., & Lü, X. (2019). Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocolloids, 94, 475–99. https://doi.org/10.1016/j.foodhyd.2019.03.032.

Yeni, Anja, M., & Titi, C., S. (2016). Penggunaan substrat whey tahu untuk produksi biomassa oleh Pediococcus pentosaceus E.1222. Jurnal Teknologi Industri Pertanian. 26(3), 284–293. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/15713.



DOI: https://doi.org/10.22146/teknosains.103083

Article Metrics

Abstract views : 1769 | views : 1247

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Susmaya Atmandaru et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



 Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing