Influence of sulfuric acid concentration on the surface roughness of titanium alloy plates

https://doi.org/10.22146/majkedgiind.93789

Adela Dayu Fantastika(1), Trijani Suwandi(2*), Tansza Setiana Putri(3)

(1) Study Program of Dentistry Education, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(2) Department of Periodontics, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(3) Department of Dental Materials, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(*) Corresponding Author

Abstract


The surface roughness of an implant material (titanium alloy) is an important factor in optimizing osseointegration. Various efforts have been made to optimize the roughness of implant materials, such as acid etching. Previous research showed etching with sulfuric acid ((H2SO4)) at a temperature of 60 °C for 60 minutes could increase roughness. However, further research is needed regarding the concentration of H2SO4 that can optimize surface roughness. This research aimed to determine the concentration of H2SO4 that can be used to obtain optimal roughness. This study used a pre-test and post-test group design by immersing titanium alloy plates in a solution of saline water (negative control), 12.17 M HCl (positive control), and (H2SO4) at various concentrations, namely 6.94 M, 9 M, and 11.06 M for 60 minutes at 60 °C. Next, a surface roughness test and Scanning Electron Microscopy (SEM) were carried out. The research results were analyzed statistically using the Shapiro-Wilk, Wilcoxon, Kruskal-Wallis, and Mann-Whitney tests. The results showed that in the (H2SO4) group, there were significant differences before and after treatment (p < 0.05). The higher the concentration of (H2SO4) used, the higher the surface roughness value. The SEM test showed that the group with a higher (H2SO4) concentration had a rougher topography and more visible grooves. In conclusion, etching with (H2SO4) can increase the surface roughness of titanium alloys, and (H2SO4) at a concentration of 11.06 M led to the highest roughness value in this study.


Keywords


acid etching; dental implant; sulfuric acid; surface roughness; titanium alloy

Full Text:

7. Adela Dayu


References

1. Anbarserri, Nada M, Ismail, Mohammed K. Impact of severity of tooth loss on oral healthrelated quality of life among dental patients. 2020; 9(1): 187–191.
doi: 10.4103/jfmpc.jfmpc_909_19

2. Nørgaard Petersen F, Jensen SS, Dahl M. Implant treatment after traumatic tooth loss:
A systematic review. Dent Traumatol. 2022; 38(2): 105–16. doi: 10.1111/edt.12730

3. Cortés-Bretón Brinkmann J, García-Gil I, Pedregal P, Peláez J, Prados-Frutos JC, Suárez MJ. Long-term clinical behavior and complications of intentionally tilted dental implants compared with straight implants supporting fixed restorations: A systematic review and meta-analysis. Biology (Basel). 2021; 10(6): 1–16. doi: 10.3390/biology10060509

4. Velasco-Ortega E, Jimenez-Guerra A, Monsalve-Guil L, Ortiz-Garcia I, Nicolas-Silvente AI, Segura-Egea JJ, et al. Long-term clinical outcomes of treatment with dental implants with acid etched surface. Materials (Basel). 2020; 13(7): 1–12. doi: 10.3390/ma13071553

5. Chauhan P, Koul V, Bhatnagar N. Effect of acid etching temperature on surface physiochemical
properties and cytocompatibility of Ti6Al4V ELI alloy. Mater Res Express. 2019; 6(10): 10542. doi: 10.1088/2053-1591/ab3ac5

6. Afya Sahib Diab Al-Radha. The influence of different acids etch on dental implants titanium
surface. IOSR-JDMS. 2016; 15(8): 87–91. doi: 10.9790/0853-1508098791

7. Nicolas-Silvente AI, Velasco-Ortega E, Ortiz- Garcia I, Monsalve-Guil L, Gil J, Jimenez- Guerra A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel). 2020; 13(2): 1–13. doi: 10.3390/ma13020314

8. Chiayi Shen, Ralph Rawls, Esquivel Upshaw. Phillip’s science of dental material. In: 13th ed.
Missouri: Elsevier; 2015. 456–60, 464, 465, 475. Available from: https://evolve.elsevier.com/cs/
product/9780323697552?role=student

9. Pandey C, Rokaya D, Bhattarai BP. Contemporary concepts in osseointegration of dental implants: a review. Biomed Res Int. 2022; 2022: 6170452. doi: 10.1155/2022/6170452

10. Alagatu A, Dhapade D, Gajbhiye M, Panjrekar R, Raut A, Awate N, et al. Detailed study on
basic methodology of dental implant and surface modification techniques. IOP Conf Ser Mater Sci Eng. 2022; 1259(1): 012046. doi: 10.1088/1757-899X/1259/1/012046

11. Sasikumar Y, Indira K, Rajendran N. Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: A review. J Bio- Tribo-Corrosion. 2019; 5(1): 1–25. doi: 10.1007/s40735-019-0229-5

12. Kohler R, Sowards K, Medina H. Numerical model for acid-etching of titanium: Engineering surface roughness for dental implants. J Manuf Process. 2020; 59:113–21. doi: 10.1177/1350650119864246

13. Zakiyah D, Effendy R, Prasetyo EA. The effect of glycerin on the surface hardness and roughness of nanofill composite. Conserv Dent J. 2019; 8(2): 104–11.
doi: 10.20473/cdj.v8i2.2018.104-111

14. Budiana B, Nakul F, Wivanius N, Sugandi B, Yolanda R. Analisis kekasaran permukaan
besi ASTM36 dengan menggunakan surftest dan image –J. J Appl Electr Eng. 2020; 4(2):
49–54. doi: 10.30871/jaee.v4i2.2747

15. Kulal R, Jayanti I, Sambashivaiah S, Bilchodmath S. An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes -A SEM study. J
Clin Diagnostic Res. 2016; 10(10): ZC51–4. doi: 10.7860/JCDR/2016/18991.8649

16. Mohammed A, Abdullah A. Scanning Electron Microscopy (SEM): A Review. Proceedings of 2018 International Conference on Hydraulics and Pneumatics - HERVEX. Romania; 2019.

17. Reshadi F, Khorasani S, Faraji G. Surface characterization of nanostructured commercially pure titanium modified by sandblasting and acid-etching for implant applications. Proc Inst Mech Eng Part J J Eng Tribol. 2020; 234(3): 414–23. doi: 10.1002/adem.201901258

18. Zhang LC, Chen LY, Wang L. Surface modification of titanium and titanium alloys:
technologies, developments, and future interests. Adv Eng Mater. 2020; 22(5): 1901258.
doi: 10.18196/di.8208

19. Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis. 2020; 2(2): 100–
116. doi: 10.3390/prosthesis2020011

20. Rudloff E, Hopper K. Crystalloid and colloid compositions and their impact. Front Vet Sci.
2021; 8(3): 639848. doi: 10.1016/j.jmapro.2020.09.014

21. Kramer SM, Gorichev IG, Lainer YA, Artamonova IV, Terekhova MV. Calculation of
the solubility of TiO2 and titanates in sulfuric acid solutions. Russ Metall. 2014; 2014(9):
704–707. doi: 10.1134/S0036029514090109

22. Pierre C, Bertrand G, Rey C, Benhamou O, Combes C. Calcium phosphate coatings
elaborated by the soaking process on titanium dental implants: Surface preparation, processing
and physical–chemical characterization. Dent Mater. 2019; 35(2): e25–35.
doi: 10.1016/j.dental.2018.10.005

23. Cervino G, Fiorillo L, Iannello G, Santonocito D, Risitano G, Cicciù M. Sandblasted and
acid etched titanium dental implant surfaces systematic review and confocal microscopy
evaluation. Materials (Basel). 2019; 12(11):1763. doi: 10.3390/ma12111763



DOI: https://doi.org/10.22146/majkedgiind.93789

Article Metrics

Abstract views : 1451 | views : 400

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics