Effects of Monosodium Glutamate (MSG) intake during pregnancy and lactation on calcium levels in the teeth and alveolar bones of rat offspring
Ali Taqwim(1*), Anggita Rizky Rizali Noor(2), Erna Kusuma Wati(3), Amilia Ramadhani(4)
(1) Department of Pediatric Dentistry, School of Dentistry, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
(2) Department of Pediatric Dentistry, School of Dentistry, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
(3) Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
(4) Department of Oral Biology, School of Dentistry, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
(*) Corresponding Author
Abstract
Monosodium glutamate (MSG) is a widely used food additive that enhances flavor. However, excessive MSG intake during pregnancy and lactation may pose health risks to both the mother and the developing fetus, particularly in terms of tooth and bone development. This study aimed to investigate the effect of maternal oral administration of MSG during pregnancy and lactation on calcium levels in the teeth and alveolar bones of rat offspring. This research is a laboratory experiment with a post-test-only control group design. Thirty pregnant Sprague Dawley rats were randomly allocated into three groups: a control group receiving distilled water and two treatment groups receiving MSG at doses of 3 mg/g BW and 6 mg/g BW, respectively. MSG was administered orally from the 5th day of pregnancy until the end of the lactation period. The calcium levels in the teeth and alveolar bones of the offspring were measured using atomic absorption spectrophotometry (AAS). Data were analyzed using one-way ANOVA and post hoc LSD. The mean calcium levels in the teeth and alveolar bones of the offspring in the MSG treatment groups were significantly lower than those in the control group (p < 0.05). The reduction in calcium levels was dose-dependent, with the higher MSG dose (6 mg/g BW) resulting in a more pronounced decrease compared to the lower dose (3 mg/g BW). Maternal MSG intake during pregnancy and lactation leads to a dose-dependent decrease in calcium levels in rat offspring’s teeth and alveolar bones, suggesting that excessive MSG intake during these critical periods potentially leads to impaired tooth and bone development.
Keywords
Full Text:
9. Ali TaqwimReferences
1. Valdivia DCM, Vázquez Sánchez MA, Aguirre Cortés DE, Gutiérrez Cortés E. Oral health: fundamentals, importance, and perspectives. Intech Open. 2023.
doi: 10.5772/intechopen.111610
2. Caruso S, Bernardi S, Pasini M, Giuca MR, Docimo R, Continenza MA, et al. The process of mineralisation in the development of human tooth. Eur J Paediatr Dent. 2016; 17(4): 322–326.
3. Jouanne M, Oddoux S, Noel A, Voicin-Chiret AS. Nutrient requirements during pregnancy
and lactation. Nutrients. 2021; 13(2): 692. doi: 10.3390/nu13020692
4. Marshall NE, Abrams B, Barbour LA, Catalano P, Christian P, Friedman JE, et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet
Gynecol. 2022; 226(5): 607–632. doi: 10.1016/j.ajog.2021.12.035
5. Krithaksha V, Thamizharasan S, Monisha S, Mahendranath P. Impact of food additives on
pregnant women and child health. Int J Sci Res. 2021; 10(1): 20-22. doi: 10.36106/ijsr
6. Yamamoto T, Inui-Yamamoto C. The flavorenhancing action of glutamate and its mechanism involving the notion of kokumi. npj Sci Food. 2023; 7(1): 1-6. doi: 10.1038/s41538-023-00178-2
7. Henry-Unaeze HN. Chapter 17 - Monosodium glutamate in foods and its biological importance. In: Ensuring Global Food Safety. 2nd ed. Academic Press; 2022. p. 341-357.
8. Food and Drug Administration (FDA) of USA. Food additives and GRAS ingredients
- information for consumers. Online version. 2024. Available from: https://www.fda.gov/food/
food-ingredients-packaging/food-additivesand-gras-ingredients-information-consumers.
9. Kazmi Z, Fatima I, Perveen S, Malik SS. Monosodium glutamate: Review on clinical reports. International Journal of Food Properties. 2017; 20(sup2): 1807-1815.
doi: 10.1080/10942912.2017.1295260
10. Yang L, Gao Y, Gong J, Peng L, El-Seedi HR, Farag MA, Zhao Y, Xiao J. A multifaceted
review of monosodium glutamate effects on human health and its natural remedies. Food
Materials Research. 2023; 3: 16. doi: 10.48130/FMR-2023-0016
11. Abu Elnaga NA, Sarhan M, Mansour H. Teratogenicity of monosodium glutamate on the pregnant rats and their fetuses. Egyptian Journal of Hospital Medicine. 2019; 74(8): 1737-1747. doi: 10.21608/EJHM.2019.28580
12. Ibrahim MN, Mostafa EM, Toama FN. Histological effects of monosodium glutamate on brain of infant Albino Swiss Mice Mus Musculus. J Med Chem Sci. 2021; 4(6): 564-570. doi: 10.26655/JMCHEMSCI.2021.6.4
13. Shosha HM, Ebaid HM, Toraih EA, Abdelrazek HM, Elrayess RA. Effect of monosodium glutamate on fetal development and progesterone level in pregnant Wistar Albino rats. Environ Sci Pollut Res Int. 2023; 30(17): 49779–49797. doi:10.1007/s11356-023-25661-x
14. Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu, GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf. 2019; 18(4): 1111-1134. doi:
10.1111/1541-4337.12448
15. Sassaki KT, Delbem AC, Santos OA, Shimabukuro CE, Nakamune AC, Castro JC, et al. Neuroendocrine alteration impairs enamel mineralization, tooth eruption, and saliva in rats.
Braz Dent Res J. 2003; 17(1): 5-10. doi: 10.1590/s1517-74912003000100002
16. Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK. The interplay between
monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon. 2023; 9(9):
e19675. doi: 10.1016/j.heliyon.2023.e19675
17. Bera TK, Kar SK, Yadav PK, Mukherjee P, Yadav S, Joshi B. Effects of monosodium
glutamate on human health: A systematic review. World J Pharm Sci. 2017; 5(5): 78-202.
18. Haddad M, Esmail R, Khazali H. Reporting the effects of exposure to monosodium glutamate on the regulatory peptides of the hypothalamic-pituitary-gonadal axis. Int J Fertil Steril. 2021; 15(4): 246-251. doi: 10.22074/IJFS.2021.522615.1072.
19. Khalaf HA, Arafat EA. Effect of different doses of monosodium glutamate on the thyroid
follicular cells of adult male albino rats: a histological study. Int J Clin Exp Pathol. 2015;
8(12): 15498-15510.
20. Dhindsa KS, Omran RG, Bhup R. Effect of monosodium glutamate on the histogenesis
of bone and bone marrow in mice. Anat Acta (Basel). 1978; 101(3): 212-217.
doi: 10.1159/000144969
21. Abou-Bakr DA, Mansour RSAE. Maternal metabolic alterations in monosodium glutamate fed rats during gestation and lactation period. Bulletin of Egyptian Society for Physiological Sciences. 2020; 40(2): 54-69. doi: 10.21608/besps.2020.21680.1040
22. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse:
review and criteria for the staging of the estrous cycle using stained vaginal smears.
Toxicol Pathol. 2015; 43(6): 776-793. doi: 10.1177/0192623315570339
23. Blais A, Rochefort G, Moreau M, Calvez J, Wu X, Matsumoto H, Blachier F. Monosodium
glutamate supplementation improves bone status in mice under moderate protein
restriction. JBMR Plus. 2019; 3(10): e10224. doi:10.1002/jbm4.10224
24. Indahyani DE, Nadhisa G, Firdausa P, Wulandari E, Nugroho R. Analysis of tooth
enamel structure and mechanical properties in rats induced monosodium glutamate
(MSG). Malays J Med Health Sci. 2020; 16(SUPP4): 30-36.
25. Lon J, Van Winkle. Perspective: might maternal dietary monosodium glutamate (MSG) consumption impact pre- and periimplantation embryos and their subsequent development? Int J Environ Res Public Health. 2022; 19(20): 13611. doi: 10.3390/ijerph192013611
26. Zhu S, Pang Y, Xu J, Chen X, Zhang C, Wu B, Gao J. Endocrine regulation on bone by
thyroid. Front Endocrinol (Lausanne). 2022; 13: 873820. doi: 10.3389/fendo.2022.873820
27. Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium glutamate: a threat to public
health? EXCLI J. 2018; 17: 273-278. doi: 10.17179/excli2018-1092
28. Zhu S, Gouaux E. Structure and symmetry inform gating principles of ionotropic glutamate
receptors. Neuropharmacology. 2017; 112(PtA): 11-15. doi: 10.1016/j.neuropharm.2016.08.034
29. Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and
innovation. Development. 2017; 144(9): 1588-1599. doi: 10.1242/dev.139055
30. Donato J, Kopchick JJ. New findings on brain actions of growth hormone and potential clinical implications. Rev Endocr Metab Disord. 2024; 25(3): 541-553.
doi: 10.1007/s11154-023-09861-x
31. Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, et al. Regulation of GH and
GH signaling by nutrients. Cells. 2021; 10(6): 1376. doi: 10.3390/cells10061376
32. Torlińska-Walkowiak N, Majewska KA, Kędzia A, Opydo-Szymaczek J. Clinical implications
of growth hormone deficiency for oral health in children: a systematic review. J Clin Med.
2021; 10(16): 3733. doi: 10.3390/jcm10163733
33. Kovacs CS. Maternal mineral and bone metabolism during pregnancy, lactation, and
post-weaning recovery. Physiol Rev. 2016; 96(2): 449-547.
doi: 10.1152/physrev.00027.2015
DOI: https://doi.org/10.22146/majkedgiind.82261
Article Metrics
Abstract views : 402 | views : 161Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.