Antibiofilm activity of Cyanobacteria spirulina as an irrigation solution against Enterococcus faecalis

https://doi.org/10.22146/majkedgiind.78246

Diana Soesilo(1*), Fani Pangabdian(2), Eriza Juniar(3)

(1) Department of Conservative Dentistry, Universitas Hang Tuah, Surabaya, East Java
(2) Department of Conservative Dentistry, Universitas Hang Tuah, Surabaya, East Java
(3) Department of Pediatric Dentistry, Universitas Hang Tuah, Surabaya, East Java
(*) Corresponding Author

Abstract


Sodium hypochlorite (NaOCl) is currently the golden standard for root canal irrigation. NaOCl at a concentration of 5.25% to 6% can eliminate E. faecalis, but this concentration can increase the risk of toxic effects. Cyanobacteria spirulina is known to produce several secondary metabolites that have antimicrobial activity against gram-positive and gram-negative bacteria. The aim of this study was to determine the antibiofilm power of Cyanobacteria spirulina against the biofilms of Enterococcus faecalis at concentrations of 60 mg/ml, 70 mg/ml, 80 mg/ml, and 90 mg/ml. This research was a true experiment with a post-test only group design. The object of the research was divided into 6 groups. Group 1 was a negative control group, group 2 was a positive control group with 5% NaOCl, group 3, 4, 5, 6 were treatment groups given Cyanobacteria spirulina solution at a concentration of 60 mg/ml, 70 mg/ml, 80 mg/ml, and 90 mg/ml, respectively. Optical density (OD) of bacteria was bound by staining and analyzed by ELISA auto reader with a wave length of 595 nm (OD 595 nm). The results of the LSD test showed that the significance between K+ and P1, P2, P3 (p< 0.005), K+ and P4 (p= 0.129), P1 and P2 (p=0.449), P3 and P4 (p=0.178). Significance of p<0.0005 showed a significant difference between the groups. The data were analyzed using the one-way ANOVA test followed by a double comparison test with the Least Significance Different (LSD) Post Hoc test method. Cyanobacteria spirulina solution at a concentration of 90 mg/ml had the greatest inhibitory effect on the biofilm formation of Enterococcus faecalis.


Keywords


biofilm; Cyanobacteria spirulina; Enterococcus faecalis; irrigation solution; sodium hypochlorite

Full Text:

PDF


References

1. Anwar R, Wirda SK, Harniati ED. Perbandingan aktivitas antibakteri ekstrak etil asetat daun rasamala (Altingia excelsa noronha) dan bahan pengisi 3 mix terhadap Enterococcus faecalis. Indonesian Journal of Dentistry. 2021; 1(1): 14-19. doi: 10.26714/ijd.v1i1.6812

2. Soraya C, Sunnati, Wulandari F. Efek antibakteri ekstrak daun mimba (Azadirachta
Indica) terhadap pertumbuhan Enterococcus faecalis secara in-vitro. Cakradonya Dental
Journal. 2019; 11(1): 23-32. doi: 10.24815/cdj.v11i1.13624

3. Tumbel LK, Wowor PM, Siagian KV. Uji daya hambat minyak kelapa murni (Virgin
Coconut Oil) terhadap pertumbuhan bakteri Enterococcus faecalis. Jurnal e-GiGi (eG).
2017; 5(1): 100-105. doi: 10.35790/eg.5.1.2017.15535

4. Lambiju EM, Wowor PM, Leman MA. Uji daya hambat ekstrak daun cengkih
(Syzygiumaromaticum (L.)) terhadap bakteri enterococcus faecalis. Jurnal e-GiGi (eG).
2017; 5(1): 79-83. doi: 10.35790/eg.5.1.2017.15547

5. Deviyanti S. Potensi antimikroba photo activated disinfection terhadap enterococcus
faecalis pada perawatan saluran akar gigi. Cakradonya Dental Journal. 2019; 11(1): 13-
22. doi: 10.24815/cdj.v11i1.13623

6. Sienko A, Odjana D, Majewsk P, Sacha P, Wieczorek P, Tryniszewska P. Comparison
of biofil producing enterocccus faecalis, enterococcus faecum and unusual
enterococcus stain. European Journal of Biological research. 2015; 7(4): 291-298.
doi: 10.5281/zenodo.1000837

7. Armanda F, N Ichrom MY, Budiarty LY. Efektivitas daya hambat bakteri ekstrak
bawang dayak terstandarisasi flavonoid terhadap enterococcus faecalis (In Vitro).
Dentino (Jur. Ked. Gigi). 2017; 2(2): 183-187. doi: 10.20527/dentino.v2i2.3997

8. Noviyandri PR, Andayani R, Rizky E. Potensi ekstrak alga merah gracilaria verrucosa
sebagai penghambat perkembangan pembentukan biofilm enterococcus faecalis
pada infeksi saluran akar gigi. Journal of Syiah Kuala Dentistry Society. 2018; 3(1):
6-15. Available at https://jurnal.usk.ac.id/JDS/article/view/11054/8803

9. Deviyanti S. Potensi larutan chitosan 0,2% sebagai alternatif bahan irigasi dalam
perawatan saluran akar gigi (kajian pustaka). Jurnal Ilmiah dan Teknologi Kedokteran Gigi.
2018; 14 (1): 6-10. doi: 10.32509/jitekgi.v14i1.642

10. Mozartha M, Silvia P, Sujatmiko B. Perbandingan aktivitas antibakteri ekstrak curcuma zedoaria dan bahan irigasi natrium hipoklorit 2.5% terhadap Enterococcus faecalis. Jurnal Material Kedokteran Gigi. 2019; 8(1): 22-29. doi: 10.32793/jmkg.v8i1.330

11. Suryani RD, Kusuma ARP, Putranto RR. Efektivitas antibakteri ekstrak etanol siwak
(salvadora persica) berbagai konsentrasi dalam menghambat pertumbuhan dan
membunuh Actinomyces spp. (Secara In Vitro). Prosiding Konferensi Ilmiah Mahasiswa
Unissula. 2019; 2(5): 33-39. Available at http://jurnal.unissula.ac.id/index.php/kimukes/
article/view/8371

12. El-Sheekh MM, Daboor SM, Swelim MA, Mohamed S. Production and characterization
of antimicrobial active substance from spirulina platensis. Iran J Microbiol. 2014;
6(2): 112-119.

13. Al-Ghanayem A. Advanced bioresearch antimicrobial activity of spirulina platensis
extracts against certain pathogenic bacteria and fungi. Indian Journal Of Indian Society Of
Education. 2018; 8(6): 96–101. doi: 10.15515/Abr.0976-4585.8.6.96101

14. Winahyu DA, Retnaningsih A, Koriah S. Uji aktivitas antibakteri ekstrak spirulina platensis
terhadap pertumbuhan bakteri Staphylococcus aureus dan Proprionibacterium acne dengan
metode difusi agar. Jurnal Analisis Farmasi. 2020; 5(2): 118-126. doi: 10.33024/jaf.v5i2.4084

15. Normalita R, Kuntman K, Wasito EB. Validity of congo red agar and modified congo red
agar to detect biofilm of Enterococcus faecalis. Jurnal Saintika Medika. 2020; 16(1): 55-65.
doi: 10.22219/sm.Vol16.SMUMM1.11064

16. Pourhajibagher M, Chiniforush N, Shahabi S, Palizvani M, Babador A. Antibacterial
and antibiofilm efficacy of antimicrobial photodynamic therapy against intracanal
Enterococcus faecalis: An In Vitro comparative study with traditional endodontic irrigation
solutions. J Dent Tehran. 2018; 15(4): 197-204.

17. Mohammadi Z, Shalavi S, Moeintaghavi M, Jafarzadeh H. A Review over benefits and
drawbacks of combining sodium hypochlorite with other endodontic materials. The Open
Dentistry Journal. 2017; 11: 661-669. doi: 10.2174%2F1874210601711010661

18. Luis EC de P. Development of a multispecies biofilm community by four root canal bacteria.
Journal of Endodontic. 2012; 38(3): 318-323. doi: 10.1016/j.joen.2011.11.008

19. Hashem YA, Amin HA, Essam TM, Yassin AS, Aziz RK. Biofilm formation in enterococci:
genotype-phenotype correlation and inhibition by vancomycin. Scientific Reports. 2017; 7(1): 1-12.

20. Christwardana M, Nur MA, Hadiyanto. Spirulina platensis: Potensinya sebagai bahan
pangan fungsional. Jurnal Aplikasi Teknologi Pangan. 2013; 2(1): 1-4.

21. Verma ML, Chandel AK. Biotechnological Production of Bioactive Compounds 1st ed.
Elsevier B.V; 2019. 224-226.

22. Kim SK. Encyclopedia of Marine Biotechnology: Five Volume Set, 1st ed. John Wiley & Sons
Ltd. Published; 2020. 2161-2162.

23. Hanani T, Widowati I, Susanto A. Kandungan senyawa beta karoten pada spirulina platensis
dengan perlakuan perbedaan lama waktu pencahayaan. Buletin Oseanografi Marina.
2020; 9(1): 55–58. doi: 10.14710/Buloma.V9i1.24681.

24. Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: their
application and their impact on human health. Current Research in Biotechnology. 2021;
3(1): 65-81. doi: 10.1016/j.crbiot.2021.03.001

25. Rashad S, El-Chaghaby GA, Elchaghaby MA. Antibacterial activity of silver nanoparticles
biosynthesized using spirulina platensis microalgae extract against oral pathogens.
Egyptian Journal of Aquatic Biology & Fisheries. 2019; 23(5): 261 – 266.

26. Gheda SF, Ismail GA. Natural Products from some soil cyanobacterial extracts with potent
antimicrobial, antioxidant and cytotoxic activities. An Acad Bras Cienc. 2020; 92(2): 1-18.

27. Afriani S, Uju, Setyaningsih I. Komposisi kimia spirulina platensis yang dikultivasi dalam
fotobioreaktor dengan fotoperiode berbeda. JPHPI. 2018; 21(3): 471-479.

28. Cepas V, Gutiérrez-Del-Río I, López Y, Redondo-Blanco S, Gabasa Y, Iglesias MJ,
Soengas R, Fernández-Lorenzo A, López-Ibáñez S, Villar CJ, Martins CB, Ferreira JD, Assunção MFG, Santos LMA, Morais J, Castelo-Branco R, Reis MA, Vasconcelos V, López-Ortiz F, Lombó F, Soto SM. Microalgae and cyanobacteria strains as producers of lipids with antibacterial and
antibiofilm activity. Mariend Drugs. 2021; 19: 1-20. doi: 10.3390/md19120675

29. Usharani G, Srinivasan G, Sivasakhti S, Saranraj P. Antimicrobial activity of spirulina
platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological
Research. 2015; 9 (5): 292-298. doi: 10.5829/idosi.abr.2015.9.5.9610



DOI: https://doi.org/10.22146/majkedgiind.78246

Article Metrics

Abstract views : 1185 | views : 1322

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics