Effect of chitosan–hydroxyapatite scaffolds seeded with cryopreserved hADMSCs on bone sialoprotein secretion

https://doi.org/10.22146/majkedgiind.110209

Michael Josef Kridanto Kamadjaja(1*), Mefina Kuntjoro(2), Chandrasasi Berlian Pratiwi(3), Audrey Luisa Hartanli(4)

(1) Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
(2) Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
(3) Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
(4) Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
(*) Corresponding Author

Abstract


Tooth extraction can lead to alveolar bone resorption, requiring regenerative approaches using biomaterial scaffolds combined with stem cells. Chitosan–hydroxyapatite (CS–HA), a well-established scaffold that mimics the composition of human bone, combined with stem cells represents a promising strategy to promote bone formation. This study aimed to evaluate the effect of chitosan–hydroxyapatite (CS-HA) scaffolds seeded with cryopreserved human adipose-derived mesenchymal stem cells (hADMSCs) on bone sialoprotein (BSP) secretion. The hADMSCs used in this study were commercially obtained cryopreserved cells (ATCC® PCS-500-011™) and were characterized by flow cytometry. Scaffolds were fabricated using a freeze-drying method by combining chitosan and hydroxyapatite in a 1 : 1 ratio, followed by freezing at −80 °C. A post-test-only control group design was employed, consisting of 36 samples divided into three groups: positive control (CS-HA + hADMSCs + a-MEM), negative control (hADMSCs + osteogenic medium), and treatment (CS-HA + hADMSCs + osteogenic medium), and BSP levels were subsequently quantified on days 7, 14, 21, and 28 using ELISA. One-way ANOVA demonstrated a significant difference among groups (p = 0.000), with the highest BSP secretion observed in treatment group on day 14 (BSP levels 44.29 ± 2.58), followed by treatment group on day 28 (BSP levels 46.19 ± 7.64).  The significantly elevated BSP secretion in the treatment group on day 14 demonstrates osteoinductive characteristics of the CS-HA scaffold, supporting its potential application in bone tissue engineering and regeneration.


Keywords


bone sialoprotein; bone remodelling; chitosan hydroxyapatite scaffold; human adipose mesenchymal stem cell

Full Text:

4. Michael Josef


References

1. Ma P, Wu W, Wei Y, Ren L, Lin S, Wu J. Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering. Mater Des. 2021; 207: 109865. doi: 10.1016/j.matdes.2021.109865

2. Kamadjaja MJK, Abraham JF, Laksono H. Biocompatibility of portunus pelagicus hydroxyapatite graft on human gingival fibroblast cell culture. Med Arch. 2019; 73(5): 303–306. doi: 10.5455/medarh.2019.73.303-306

3. Setiawati A, Tricahya K, Dika Octa Riswanto F, Dwiatmaka Y. Towards a sustainable chitosan-based composite scaffold derived from Scylla serrata crab chitosan for bone tissue engineering. J Biomater Sci Polym Ed. 2023; 35(2): 1–18. doi: 10.1080/09205063.2023.2271263

4. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. 2020; 1: 6–18. doi: 10.1016/j.engreg.2020.05.003

5. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019; 84: 16–33. doi: 10.1016/j.actbio.2018.11.039

6. Chinnasami H, Dey MK, Devireddy R. Three-Dimensional scaffolds for bone tissue engineering. Bioengineering. 2023; 10(7): 759. doi: 10.3390/bioengineering10070759

7. Bisht B, Hope A, Mukherjee A, Paul MK. Advances in the fabrication of scaffold and 3D printing of biomimetic bone graft. Ann Biomed Eng. 2021; 49(4): 1128–1150. doi: 10.1007/s10439-021-02752-9

8. Pederzoli F, Joice G, Salonia A, Bivalacqua TJ, Sopko NA. Regenerative and engineered options for urethroplasty. Nat Rev Urol. 2019; 16(8): 453–464. doi: 10.1038/s41585-019-0198-y

9. Soundarya SP, Menon AH, Chandran SV, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol. 2018; 119: 1228–1239. doi: 10.1016/j.ijbiomac.2018.08.056

10. Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, et al. The concept of scaffold-guided bone regeneration for the treatment of long bone defects: current clinical application and future perspective. J Funct Biomater. 2023; 14(7): 341. doi: 10.3390/jfb14070341

11. Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP. Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering C. 2019; 100: 631–44. doi: 10.1016/j.msec.2019.03.037

12. Farazin A, Ghasemi AH. Design, synthesis, and fabrication of chitosan/hydroxyapatite composite scaffold for use as bone replacement tissue by sol–gel method. J Inorg Organomet Polym Mater. 2022; 32(8): 3067–3082. doi: 10.1007/s10904-022-02343-8

13. Jadoun S, Dilfi KFA. Silver nanoparticles with natural polymers silver nanoparticles with natural polymers. Springer International Publishing; 2022. 139-157. doi: 10.1007/978-3-030-44259-0_6

14. Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019; 9(9): 470. doi: 10.3390/biom9090470

15. Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G, et al. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res A. 2022; 110(2): 266–272. doi: 10.1002/jbm.a.37283

16. Nájera-Romero GV, Yar M, Rehman IU. Heparinized chitosan/hydroxyapatite scaffolds stimulate angiogenesis. Functional Composite Materials. 2020; 1(1): 1–15.

17. Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, et al. Adipose-Derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020; 2020: 8810813. doi: 10.1155/2020/8810813

18. Antebi B, Asher AM, Rodriguez LA, Moore RK, Mohammadipoor A, Cancio LC. Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J Transl Med. 2019; 17(1): 1–13. doi: 10.1186/s12967-019-2038-5

19. Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci. 2020; 21(4): 1306. doi: 10.3390/ijms21041306

20. Kriegel A, Langendorf E, Kottmann V, Kämmerer PW, Armbruster FP, Wiesmann-Imilowski N, et al. Bone sialoprotein immobilized in collagen type I Enhances Angiogenesis In Vitro and In Ovo. Polymers (Basel). 2023; 15(4): 1–12. doi: 10.3390/polym15041007

21. Klein A, Baranowski A, Ritz U, Götz H, Heinemann S, Mattyasovszky S, et al. Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J Biomed Mater Res B Appl Biomater. 2018; 106(7): 2565–2575. doi: 10.1002/jbm.b.34073

22. Jaafar MK, Kadhim EF. Immunohistochemical evaluation for integrin binding sialoprotein on healing process of intrabony defect treated by bone sialoprotein. Journal of Baghdad College of Dentistry. 2022; 34(3): 35–41. doi: 10.26477/jbcd.v34i3.3215

23. Kamadjaja MJK, Salim S, Rantam FA. Osteogenic potential differentiation of human amnion mesenchymal stem cell with chitosan-carbonate apatite scaffold (in vitro study). Bali Medical Journal. 2016; 5(3): 71. doi: 10.15562/bmj.v5i3.296

24. Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Ihsan IS, et al. In vitro bone sialoprotein-I expression in combined gingival stromal progenitor cells and platelet rich fibrin during osteogenic differentiation. Tropical Journal of Pharmaceutical Research. 2018; 17(12): 2341–2345.

25. He X, Ao H, Qiao Y, Li Z. 3D-printed porous scaffold promotes osteogenic differentiation of hADMSCs. Open Medicine (Poland). 2021; 16(1): 1182–1189.

26. Sober SA, Darmani H, Alhattab D, Awidi A. Flow cytometric characterization of cell surface markers to differentiate between fibroblasts and mesenchymal stem cells of different origin. Arch Med Sci. 2023; 19(5): 1487–1496. doi: 10.5114/aoms/131088

27. Kamadjaja MJK. Bone remodeling using a three-dimensional chitosan - hydroxyapatite scaffold seeded with hypoxic conditioned human amnion mesenchymal stem cells. Dental Journal (Majalah Kedokteran Gigi). 2021; 54(2): 68–73. doi: 10.20473/j.djmkg.v54.i2.p68-73

28. Tamaño-Machiavello MN, Carvalho EO, Correia D, Cordón L, Lanceros-Méndez S, Sempere A, et al. Osteogenic differentiation of human mesenchymal stem cells on electroactive substrates. Heliyon. 2024; 10(7): e28880. doi: 10.1016/j.heliyon.2024.e28880

29. Gritsch L, Maqbool M, Mouriño V, Ciraldo FE, Cresswell M, Jackson PR, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium. J Mater Chem B. 2019; 7(40): 6109–6124.

30. Ariestania V, Hendrijantini N, Prahasanti C, Prasetyo E, Kuntjoro M, Sari RP, et al. Cytotoxicity of HA-TCP scaffold on human umbilical cord mesenchymal stem cells using MTT Assay. International Journal of Integrated Engineering. 2022; 14(2): 80–85.

31. Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release. 2021; 332: 460–492. doi: 10.1016/j.jconrel.2021.02.036

32. Dave C, Mei SHJ, Mcrae A, Hum C, Sullivan KJ, Champagne J, et al. Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre- ­clinical systematic review. Elife. 2022; 11: 1–42. doi: 10.7554/eLife.75053

33. Jaafar MK, Kadhim EF. Immunohistochemical evaluation for integrin binding sialoprotein on healing process of intrabony defect treated by bone sialoprotein. Journal of Baghdad College of Dentistry. 2022; 34(3): 35–41. doi: 10.26477/jbc d.v34i3.3215

34. Zhu B-P, Guo Z-Q, Lin L, Liu Q. Serum BSP, PSADT, and Spondin-2 levels in prostate cancer and the diagnostic significance of their ROC curves in bone metastasis. 2017; 21(1): 61–67.

35. Foster BL. The role of bone sialoprotein in bone healing. J Struct Biol. 2024; 216(4): 108132. doi: 10.1016/j.jsb.2024.108132

36. Luo Y, Ge R, Wu H, Ding X, Song H, Ji H, et al. The osteogenic differentiation of human adipose-derived stem cells is regulated through the let-7i-3p/LEF1/β-catenin axis under cyclic strain. Stem Cell Res Ther. 2019; 10(1): 1–19. doi: 10.1186/s13287-019-1470-z

37. Fendi F, Abdullah B, Suryani S, Usman AN, Tahir D. Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone. 2024; 183: 117075. doi: 10.1016/j.bone.2024.117075

38. Nugraha AP, Kamadjaja DB, Sumarta NPM, Rizqiawan A, Pramono C, Yuliati A, et al. Osteoinductive and osteogenic capacity of freeze-dried bovine bone compared to deproteinized bovine bone mineral scaffold in human umbilical cord mesenchymal stem cell culture: an in vitro study. Eur J Dent. 2023; 17(4): 1106–1113. doi: 10.1055/s-0042-1758786

39. Chatzipetros E, Damaskos S, Tosios KI, Christopoulos P, Donta C, Kalogirou EM, et al. The effect of nano-hydroxyapatite/chitosan scaffolds on rat calvarial defects for bone regeneration. Int J Implant Dent. 2021; 7(1): 40. doi: 10.1186/s40729-021-00327-w

40. Yazid F, Kay ANM, Qin WY, Luchman NA, Wahab RMA, Ariffin SHZ. Morphology and osteogenic capability of MC3T3-E1 cells on granular hydroxyapatite scaffold. Journal of Biological Sciences. 2019; 19(3): 201–209.



DOI: https://doi.org/10.22146/majkedgiind.110209

Article Metrics

Abstract views : 14 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics