KONTRIBUSI FOTO UDARA DALAM IDENTIFIKASI KARAKTERISTIK HIDROLOGI DI DAERAH PARANGKRITIS DAN SEKITARNYA KABUPATEN BANTUL DAERAH ISTIMEWA YOGYAKARTA

Oleh
Totoh Gunawan

INTISARI
Pencatatan ini dilakukan di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Tujuan penelitian ini adalah untuk mengetahui kontribusi foto udara dalam identifikasi karakteristik hidrologi. Permasalahan yang dihadapi di daerah Parangkritis adalah muatan khusus sungai yang berada di saluran air dan kabindu kabur. Warna dan padatannya dari air dan sumber air yang mengalir adalah salah satu parameter yang mempengaruhi kualitas air dan sumber air tersebut. Penelitian ini dilakukan dengan metode interpretasi citra penginderaan jauh, foto udara yang digunakan adalah foto udara pasificitik hitam putih berskala 1:23.000 dan 1:10.000, serta data bahan yang digunakan meliputi petu geologi, peta kontur, dan data pengawas gorontan dari data subkab. Interpretasi yang diperoleh dari interpretasi foto udara untuk kegiatan hidrologi didasarkan pada hal-hal yang berkaitan dengan kemampuan penelitian tentang kekuatan dan proses hidrologi. Penelitian pelaksanaan hidrogeologi, hidrogeologifisika, dan hidrogeologi digunakan untuk mengetahui hubungan antara kemampuan penelitian tentang kekuatan dan proses hidrologi. Metode interpretasi hidrogeologifisika, hidrogeologifisika, dan hidrogeologi digunakan untuk mengetahui hubungan antara kemampuan penelitian tentang kekuatan dan proses hidrologi. Hasil identifikasi kemampuan penelitian tentang kekuatan dan proses hidrologi di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Hasil ini menunjukkan bahwa hal-hal yang berkaitan dengan kemampuan penelitian tentang kekuatan dan proses hidrologi di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Hasil ini menunjukkan bahwa hal-hal yang berkaitan dengan kemampuan penelitian tentang kekuatan dan proses hidrologi di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Hasil ini menunjukkan bahwa hal-hal yang berkaitan dengan kemampuan penelitian tentang kekuatan dan proses hidrologi di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Hasil ini menunjukkan bahwa hal-hal yang berkaitan dengan kemampuan penelitian tentang kekuatan dan proses hidrologi di daerah Parangkritis dan sekitarnya, Kabupaten Bantul, Daerah Istimewa Yogyakarta.

1 Dr. Totoh Gunawan, M.Si. dengan penguatan dari: Universitas Gadjah Mada, Yogyakarta.
PENDAHULUAN

Latar Belakang
Secara administratif, Parangtritis termasuk ke dalam wilayah Kabupaten Banyu
yang terletak pada bagian palung selatan dan merupakan salah satu desa pesisir di Daerah
Isitewa Yogyakarta. Secara geomorfologi, daerah Parangtritis bagian barat berupa
dataran aluvial yang berbaur dengan gunung Opak, sedang di bagian timur merupakan
pantai pantai Baturagung yang terdiri kecil-kecil fenomena masih tertapai oleh bara
gempuran karst. Salah satu penambahan umum yang dinilai di dalam wilayah pesisir sejauh
Daerah Isitewa Yogyakarta sejauh juga di daerah pesisir Parangtritis adalah masyarakat
desperasi sumberdaya air, khususnya dalam menambatnya jumlah pendedek dan
meningkatnya intensitas permandian lahan, lain dari hal-hal lain yang telah mengakibatkan
rencana desa ada usia kawasan visata pesisir Parangtritis. Dari permasalahan tersebut
timbul pertanyaan sejauh mana tingkat atau potensi keterdesapan sumberdaya air di
wilayah pesisir, oleh karena itu perlu dilakukan pengukuran potensi sumberdaya air
wilayah pesisir Parangtritis.

Penelitian-penelitian hidrologi melalui survei lapangan di pesisir selatan Daerah
Isitewa Yogyakarta telah banyak dilakukan, tetapi penelitian analisis teknis
pengendalian jauh belum banyak dilakukan. Pada dasarnya ada yang diperoleh dari
hasil interpretasi foto udara dalam kajian hidrologi belum mendapatkan data hidrologi
yang dapat digunakan secara langsung, namun masih harus dilakukan analisis
dan sintesis dengan data bawor lain untuk melihatkan pendanaan pendanaan masquer
pendanaan hidrologi. Perlihatan yang timbul kemudian sejauh mana kemampuan cair
pengendalian jauh dapat digunakan untuk menduga besarnya potensi keterdesapan
sumberdaya air (hidrologi), oleh karena itu dalam penelitian ini membahas metode
terangkan sejauh mana kontribusi foto udara dalam identifikasi karakteristik hidrologi.

Konsup air yang digunakan sebagai dasar interpretasi foto udara untuk
kajian hidrologi didasarkan pada hubungan antara bentang-bentang kemampuan
bentang-bentang dan proses hidrologi, seperti dengan lingkup kajian hidrologi, enda dari
skala mako aspek geometri aliran hingga skala lintas analisis dan evolusi sumberdaya
air secara regional. Perkembangan pendekatan yang digunakan untuk melihat hubungan
antara kemampuan-kemampuan bentang-bentang dan proses hidrologi digunakan
pendekatan pendekatan hidrometeorologi, hidrogeologi, dan hidrogeologi. Satuan
wilayah hidrologi air pemantauan yang umum digunakan seluas satuan analisis adalah
wilayah air dalam satuan pengikusan (KAS), sedang untuk hidrologi air tanah digunakan satuan
wilayah skufer. Sementara berfungsi kegunaan teknologi cair perintis baku, baik dirujuk dari
dasarnya mengikuti proses fisik maupun fenomena geologi, baik apikasi yang
telah menunggak keberhasilannya, namun khususnya dalam bidang hidrologi masih
perlu ditinjau. Oleh karena itu, perlu penelitian di makadam untuk mengetahui sejauh
manakah kontribusi cair pengendalian jauh dalam identifikasi karakteristik hidrologi

Melesat Geografi Indonesia, Yogyakarta, 13 November 2001 (Halus 18-23)
berdasarkan hasil analisis dan sintesis hubungan komponen-komponen bantuan integral, dengan menggunakan kurva daerah Panangiria dan selanjutnya

Tujuan Penelitian
Penelitian hidrologi dengan bantuan citra penginderaan jauh berkaitan besar dikemukakan dalam survei hidrologi luas. Secara rinci tujuan penelitian ini dapat disajikan sebagai berikut.

1) Mengukur sejauh mana kemampuan citra penginderaan jauh untuk interpretasi komponen-komponen bantuan integral, yang terkait dengan prinsip hidrologi yang dapat didapatkan untuk identifikasi karakteristik hidrologi.

2) Penelitian karakteristik hidrologi hasil penggunaan bantuan citra komponen-komposisi bantuan integral terhadap dan proses hidrologi.

3) Pendugaan potensi hidrologi secara kualitatif berdasarkan hasil analisis dan sintesis karakteristik hidrologi lain data sebelumnya.

TINJAUAN PUSTAKA
permukaan, informasi dinamis seperti tektur penggunaan lahan dan vegetasi diperoleh dari interpretasi foto udara.

Totok Gunawan (1997) meneliti tentang kontribusi foto udara untuk pemetaan batau daerah tangkapan air (DTA) sebagai bahan baku Bribie Wonosari Yogyakarta menggunakan foto udara nilai merah berwarna berskala 1:30 000 melakukan analisis morfologi. Penelitian atas daerah tangkapan air (DTA) pada wilayah bumi gunung pada dasarnya tidak dapat dilakukan, karena lagi-lagi perubahan sungai tidak dapat berfungsi sebagai bahan topografi pemaham air hujan interpretasi foto udara dapat diidentifikasi beberapa jenis penunjukan air (mataair dan resebars) dan dapat dibedakan antara penunjukan air sebagai alam sungai bawah tanah yang keluar dari mata air dan yang keluar dari mata air gunung yang keluar adalah mataair Engman dan Garney (1991) mengemukakan bahwa peruntukan data penginderaan jarak jauh lebih efektif apabila dimengunakan dengan prosedur Sistem Informasi Geografis (SIG). Dalam identifikasi penunjukan matair menggunakan metode yang dikembangkan Todd (1959) dan Finger (1988) sebagai kunciinterpretasi pencapaian air (mataair dan resebars) dalam interpretasi foto udara, antara lain: udara pengembagaan konsentrasi dan penggunaan muka air tanah, vegetasi yang menggembol dan keluar alam sungai, jalan penutup (sekar).

Daerah Parmagritis merupakan kondisi geologi dan geomorfologi yang cukup tipe dan mengandung unsur untuk dibedakan gunungҚ marriages banyak dijumpai datu pada Batara dan gunung Ujung yang mumpu sebagai media meresapnya air hujan ke dalam aliran tanah/bunutan kemudian membantu air tanah yang menjadi cadangan bagi masyarakat Parmagritis dan sekitarnya (Sunikto, 1988).
METODE PEMELOSAN

Bahan dan Alat Pemelitian

Bahan-bahan yang digunakan dalam pemelitian ini meliputi: (1) Foto udara pankronoskit hitam putih berskala 1:25 000 tahun 1992, berskala 1:10 000 tahun 1996 dan foto rata-rata yang dipertebat secara foto grafis berskala 1:5 000, (2) Peta dasar (desa/kota) hasil generalisasi kartografi berskala 1:20 000 lembah Parangtritis (Sektorparis dan Tjok Gomawan, 1999), (3) Peta benua/batu berskala 1:20 000 dalam Parangtritis (Sektorparis dan Tjok Gomawan, 1999), (4) Peta geologi Parangtritis dan Sekitaranya berskala kurang lebih 1:20 000 (MedanUkai and Partners, 1984), (5) Peta k_histogram ruang foto udara nilai disesuaikan dengan alat Parangtritis berskala 1:25 000 (Sektor Banyumanik, 1998), (6) Peta Geologi Lembah Yogya/Jogja berskala 1:100 000 tahun 1977 (Direktorat Geologi Mineralogi), (7) Buat dan grafik hasil pengolahan gambar dan desain Parangtritis (Sektorparis, Parangpari, 1999).

Alat-alat yang digunakan dalam pemelitian ini meliputi: (1) Seseorang cermin merk Topcon digunakan untuk interpretasi foto udara di laboratorium, (2) Kaca pembesar (lupa) digunakan untuk interpretasi foto udara mono skopik di lapangan, (3) Alat penonjol posisi (mapex), dengan menggunakan GPS (Global Position System) dipindai dan AutoCAD di lapangan, (4) Income level, alat yang digunakan untuk pengukuran kemiringan kerang di lapangan, (5) Folio meter, alat yang digunakan untuk pengukuran kedalaman muka air sumur dan konstruksi di lapangan, (6) Electrical Conductivity (EC) meter, alat yang digunakan untuk pengukuran data tanah lembu air di lapangan, (7) pH test universal indikator merk, alat yang digunakan untuk pengukuran tingkat keasaman air di lapangan, (8) Stop watch, alat yang digunakan untuk mengukur kecepatan aliran satuan dan unitatur di lapangan.

Lokasi Pemelitian

Lokasi pemelitian yang digunakan sebagai studi kurikulum untuk pemelitian hidrologi dengan bantuan foto udara berskala besar (1:25 000, 1:10 000 dan 1:25 000) adalah desa Parangtritis dan Sekitaranya, Kabupaten Banyuwangi, Dalam Istana Yogyakarta, seperti disampaikan pada Tata 1 (Gunawan 1). Satu pemelitian hidrologi yang digunakan sebagai studi alaman adalah alaman atau alaman yang (DAS) dalam berbagai desa pada wilayah Kabupaten Gunung Kidul, yaitu sebagian dari Daerah Tengah Batas.

Jalur Pemelitian

1) Pekiatan Laboranatorium.

Peralatan dalam pengelompokan foto udara yang meliputi peralatan penang yang, dan pengelompokan foto rata rata (bampak) berskala 1:20 000, korsi-korsi interpretasi, klasifikasi yang digunakan, dan pengelompokan interpretasi. Penentuan parameter-parameter kemampuan bentang-tang
sepuluh yang dapat dipertepat pada foto udara ditandai pada asumsi keterang hubungan antara kemampuan-kemampuan bentangal dan proses hidrologi. Parameter-parameter kemampuan bentangal yang dapat dipertepat pada foto udara secara langsung antara lain meliputi: bentuk/bukit, pola dan kematapan jaring-jaring aliran, besarnya area aliran sungai (DAS) yang lempeng atau tidak lempeng, dan kemajuan lembah. Parameter-parameter tersebut merupakan pribadi-pribadi morfologi permukaan dan morfologi DAS yang dapat dilihat dengan proses hidrologi menggunakan pendekatan hidrogeologi dan hidrologi. Kemampuan kemampuan struktur sepihak bentuk-bentuk pusaha (sersis), kolom, retak, dan pola dan kematapan jaring-jaring aliran merupakan pribadi-pribadi geometri yang dapat dilihat dengan proses hidrologi menggunakan pendekatan hidrogeologi. Sifat fisik tanah (tekstur dan suhu golongan), penggunaan lahan dan vegetasi merupakan komponen lahan yang erat kaitannya dengan proses terjadinya limpasan permukaan dan intensitasnya acap kali ke dalam lapisan tanah (sifat tanah). Langkah-langkah interpretasi untuk identifikasi karakteristik hidrologi dapat dijabarkan sebagai berikut:

a) Morfologi DAS: interpretasi morfologi DAS meliputi jaring-jaring aliran sungai dan angkud-peruhreumanya untuk delinisasi batas DAS menggunakan foto udara berkala 125.000. Hasil interpretasi pada tahap ini dapat disajikan pada pola aliran dan derau aliran sungai (DAS). Hasil interpretasi pada tahap ini dapat digunakan untuk mengungkapkan besarnya aliran permukaan untuk menguji spasial permukaan. Data pola aliran, kemajuan aliran, bentuk dan daas DAS digunakan untuk pendekatan karakteristik hidrologi air permukaan.

b) Morfologi DAS: interpretasi morfologi permukaan dilakukan pada foto udara berkala 1:25.000 untuk mengamati bentuk tiga dimensi kemampuan-kemampuan bermatahahan secara teraturan di wilayah lahan. Peta tematik mahal hasil penilaian sebelumnya (Sukawidjono dan Tresien Gisawan, 2000) digunakan sebagai referensi dalam interpretasi foto udara untuk pemetaan bentuk/bukit. Hasil pemetaan bentuk/bukit dapat digunakan untuk mendapatkan peta ekoistim. Sementara panggerapan lahan dapat disampaikan sebagai peta ekoistim bermatahahan di suatu areal perangkat manajemen. Tiga aspek ekoistim bermatahahan dapat digunakan untuk membantu penelitian dan aplikasi ekoistim bermatahahan yang menyediakan peran dan fungsionalitas lahan sebagai suatu perangkat manajemen. Dengan aspek ekoistim bermatahahan dapat digunakan untuk membantu penelitian dan aplikasi ekoistim bermatahahan yang menyediakan peran dan fungsionalitas landasan yang menyediakan peran dan fungsionalitas.
Bentuk penggunaan labor dalam penelitian ini lebih ditujukan sebagai kontribusi penuntun labor (labor guide) sebagai faktor koresponden penelitian.

d) Penelitian Mating atau Remendasi: Kejadian puncak cincin atau bunga yang berupa penanganan rumput menunjukkan bahwa saat kejadian dalam proses hidrolatografi yang mempertahakn saat suatu karakteristik hidrologi. Kunci pengawasan terpenting kejadian puncak cincin atau bunga adalah dengan baik, karena beberapa fenomena yang berkontribusi untuk kemungkinan bukanlah oleh faktor-faktor lainnya, seperti pada kejadian penanganan rumput pada zona atau jalan panas, pada kejadian yang sangat berhenti untuk mencegah detak diukur oleh keadaan alam lain, serta untuk melindungi kolam terakhir yang menerima muka air tanah. Pendekatan hidrogeometrologi dan hidrogologis digunakan dalam interpretasi fakta data 1.25 0.05. Hari identifikasi penanganan cincin atau bunga dalam benar atau tidak dalam hidrogeometrologi. Pembuatan keberadaan interpretasi kejadian puncak cincin air dilakukan dengan cara memanfaatkan antara karakterisikanya pada foto udara dan keadaan penanganan cincin atau bunga di lapangan.

f) Hidrologi Air Tanah: Identifikasi karakteristik hidrologi air tanah dilakukan dengan cara analisis dan sintesis data dan informasi karakteristik hidrologi air permukaan, serta hidrogeometrologi yang mengandung informasi penanganan mataair dan hidrology/geomorphologi, perupa kerja kedalaman muka air tanah hasil pengukuran maka air tanah dan hasil analisis data sekunder, dan data hasil pengukuran geostatistik dari pesawat sebelumnya. Hasil analisis dan sintesis data dan informasi tersebut dapat dilakukan pendugaan produksi-wilayah akurat yang mungkin sebagai cadangan air tanah.

2) Pelajaran Peluangan.

Oriensie peluang sebelum melakukan interpretasi foto udara menggunakan pokok dan metode analisis awan yang harus dilakukan untuk menghitung gambaran secara keseluruhan wilayah dan untuk menghitung karakteristik ciri-ciri wilayah kilatan. Pemetaan air permukaan alami mengikuti proses bagian, yaitu (1) uji pangan terhadap keberadaan hasil interpretasi foto udara, dan (2) pengukuran dan pengolahan peluangan celah ciri yang diduga diterima gilia foto udara. Pengukuran sampel untuk uji dan pengukuran peluangan dilakukan secara "purpose random sampling" didasarkan pada penilaian besokan. Pengukuran dan pengukuran kejadian hidrogologis pada peluangan meliputi pengukuran kejadian puncak cincin air dan keadaan alam yang seta pengukuran benar-benar debit bunga, pengukuran kedalaman muka air tanah dan
mukusinya. Kemampuan-kenampuan lain yang diamati meliputi: bentuk-bentuk pori-pori (sektor), retak, jenis biologis/batuan, jenis tanah, dan bentuk penggarapan lain.

3) Pengolahan Data dan Analisis Hasil.
 a) Pengolahan Data: Untuk menjelaskan kondisi dan potensi ekosistem bentanglahan wilayah cajian dipertahankan data hasil pengukuran hama satuan bentuk lahan dan penggarapan lahan pada masa-masa masing DAS dan dilakukan setelah selalu disimpan dan uji lapangan. Pemetaan muka air tanah pada peta dasar data dan pada hasil pengukuran muka air tanah di lapangan. Pengolahan data untuk menjelaskan ketergabatan antara kemampuan bentanglahan dan proses hidrologi mendaratkan pada suatu sub DAS dan untuk identifikasi karakteristik hidrologi wilayah kajian digunakan tabel silang dan analisis peta-peta interaksi.
 b) Analisis Hasil: Analisis kemampuan (Spatial distribution) untuk menjelaskan hasil identifikasi karakteristik hidrologi wilayah kajian mendaratkan pada suatu sub daerah aliran sungai (DAS). Karakteristik hidrologi yang dapat dijumpai meliputi potensi hidrologi air permukaan, potensi hidrologi air tanah, dan kejadian penurunan air. Satuan daerah aliran sungai (Unsi DAS) digunakan sebagai satuan analisis hidrologi secara kumulatif dalam rangka pengembangan dan konservasi sumberdaya air wilayah.

HASIL DAN PEMBAHASAN

Kemampuan-Kenampuan Bautanglahan Terpilih Alam Kaltanya Dengan Proses Hidrologi.

1) Morfometri Daerah Aliran Sungai (DAS):
 Berdasarkan hasil interpretasi jaring-jaring aliran sungai dapat dipetakan 10 aliran sungai yang mengalir dari perbukitan batuan ke dataran aluvial, khususnya pada rumpun bukit di dalam wilayah aluvial adalah jaring-jaring aliran yang efektif. Batas daerah aliran sungai didelimitasi antara bukit dan bukit bukit yang lain, sehingga dapat dipetakan 10 daerah aliran sungai (DAS), seperti diungkapkan pada Tabel 2 (Gambar 2). Pada foto udara berwarna 1:25.000 sebarannya dapat dilihat sampai dengan aliran aluvial dan dapat didelimitasi bintis sub DAS oleh 1 (one), namun dalam pendalaman ini data morfometri rincci tersebut khususnya pengukuran dimensi dalam peta.\n Kerapitan aliran masa-masa masing-masing DAS dibedakan berdasarkan perbandingan antara panjang total aliran sungai dalam DAS dibagi dengan luas DAS, hasil perhitungan DAS dan perbukitan kerapatan aliran masa-masa masing-masing DAS dapat diperiksa pada Tabel 1. Khususnya daerah dataran aluvial yang tinggi, pengukuran geologis pada mutasi basan, maka jaring-jaring aliran sungai tidak tampak jelas pada foto udara, sedang aliran aluvial yang tumpak hanya digambarkan pada basan asetara dataran aluvial dan gumble pasir di bagian selatan.
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAMA DAS</th>
<th>PANJANG ALUR TOTAL (m)</th>
<th>LUAS ALIRAN (HA)</th>
<th>KERAGADAL ALIRAN (RM/Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seruatu</td>
<td>750</td>
<td>8.20</td>
<td>9.15</td>
</tr>
<tr>
<td>2</td>
<td>Glihe</td>
<td>835</td>
<td>7.28</td>
<td>11.13</td>
</tr>
<tr>
<td>3</td>
<td>Dusun</td>
<td>1700</td>
<td>12.62</td>
<td>23.47</td>
</tr>
<tr>
<td>4</td>
<td>Ngilung</td>
<td>2500</td>
<td>32.04</td>
<td>7.80</td>
</tr>
<tr>
<td>5</td>
<td>Wancen</td>
<td>1775</td>
<td>32.04</td>
<td>5.48</td>
</tr>
<tr>
<td>6</td>
<td>Mamari</td>
<td>625</td>
<td>52.54</td>
<td>8.80</td>
</tr>
<tr>
<td>7</td>
<td>Daktak</td>
<td>4750</td>
<td>100.00</td>
<td>4.48</td>
</tr>
<tr>
<td>8</td>
<td>Tititi</td>
<td>4225</td>
<td>54.16</td>
<td>7.80</td>
</tr>
<tr>
<td>9</td>
<td>Bitik</td>
<td>6500</td>
<td>80.00</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>Parang</td>
<td>16423</td>
<td>392.54</td>
<td>4.48</td>
</tr>
</tbody>
</table>

5. Interpretasi morfologi perikanan yang dimaksudkan dalam penelitian ini adalah diukur-ukur pada kampung-kampung wilayah kajian. Interpretasi bentuklahana dilakukan pada tiga sudut berupa 1:25 000, karena pada foto sudut ini tampak lebih mencerminkan bentuklahan dominan. Interpretasi bentuklahan pada foto uster dalam penelitian ini menggunakan panduan referensi peta bentuklahan hasil penelitian BPRN plung (Badan Pusat Statistik, 2000). Hasil interpretasi bentuklahan disesuaikan ke dalam peta dasar 1:50 000 dengan membaca bentuklahan berskala 1:20 000, lalu dilakukan peta 3 (Gambar 3). Pada peta bentuklahan wilayah kajian terlihat ada beberapa bentuk alami, yaitu: peninggian dan penurunan, halus dan kasar. Dalam penelitian bentuklahan digunakan untuk menentukan bentuklahan berskala 1:50 000, secara klasifikasi menjadi tiga kategori: aliran, polder, dan hutan. Hasil interpretasi pada peta dasar dan peta interpretasi bentuklahan pada sampel-sampel masing-masing DAS digunakan pada Tabel 2. Tabel 2 berisi data bentuklahan yang digunakan. Pada peta interpretasi bentuklahan dan perhitungan luasnya pada masing-masing DAS disesuaikan pada Tabel 3. Pada Tabel 2 terdapat berbagai data seperti perhitungan (D7) masing-masing luas polder yaitu 495.68 ha (59%), kerdian kenaikan aliran (D1) seluas 115.12 ha (25%), dan luas daerah mera (D5) seluas 76.80 ha (16%), sedangkan luas lainnya (D4) seluas 115.12 ha (25%). Penelitian bentuklahan yang lain (daerah aliran, pertukran batuan gangguan, gupuk pasir) keragam dan 10%.
3) Penggunaan Lahan Daur Ulang Sangai (DAS).

Interpretasi penggunaan lahan untuk tujuan identifikasi karakteristik hidrologi pada dasarnya tidak perlu sampai dengan luas penggunaan lahan tersebut, tetapi lebih dititikberatkan pada perumahan sebagai penggunaan air bujuran yang akan menjadi impasam perumahan diarea yang akan menempat ke dalam lautan tanah. Mengingat daerah kajian tidak begitu luas maka foto udara yang senasi adalah foto udara berskala besar (1:10 000), sulungga detil kondisi perumahan lahan seperti lahan berpasir yang terbuka (umumnya pasir akik) dan yang berpengertgun tanah atau tanah perlu (gambar poin tidak tanda) mudah dibedakan dan diidentifikasi. Hasil interpretasi bentuk penggunaan lahan dirujuk ke dalam bentuk peta sasaran ekosistem bermuara berskala 1:20 000 hasil umpan sampai dengan peta bentukla, syehan, otentikasi pada Peta 3 (Gambar 3). Hasil pemaparan bentuk penggunaan lahan dan perhambutannya luasnya ndah musang-musang DAS ditunjukkan pada Tabel 2. Pada Tabel 2 terlihat bentuk penggunaan lahan kebun cemara (Kc) menempati lahan yang paling luas 276,56 ha (35,5%), kemudian lahan tegalan (Tg) seluas 272,98 ha (35,5%), lahan pertanian (P) seluas 101,34 ha (13,5%), lahan tanah (H) dan belukar (B) seluas 87,70 ha (11,27%), dan lahan tanah (S) hanya seluas 55,86 ha (7,1%).

Identifikasi Karakteristik Hidrologi dan Pendugaan Potensi Hidrologi

1) Penunçulan MasaTair dan Rambusun

Hasil interpretasi foto udara berskala 1:25 000 seluas identifikasi kenampakan buntalala betara tanah batuan yang dinkars dengan kondisi hidrologinya, diidentifikasi sasaran- sasaran potensial yang kemudian disajikan sebagai peta hidrogeomorfologi berskala 1:20 000, seperti ditunjukkan pada Peta 4 (Gambar 4). Hasil penelitian hidrogeomorfologi tersebut kemudian diabangakkan dengan hasil interpretasi ahli-ahli petani dan bentuk-bentuk kelairan, digunakan untuk identifikasi masaTair dan rambusun. Foto udara berskala 1:10 000 digunakan untuk melihat detail identifikasi detail penunçulan maaTair dengan mencakupkan pada huni-huni interpretasi. Pada foto udara berskala 1:70000 mulai-masaTair Sentong, Gagasan, dan Bito muncul pada awal aliran sungai di terbuka cemara-keratan pada permukaan lahan darat pada umumnya dinaikkan oleh vegetasi yang mengalir. Pemulian maaTair tersebut tampak lebih jelas setelah dilakukan pada foto udara yang diperbarui menjadi berskala 1:3 000 (Gambar 1b) dan sehingga pemulian dapat dilihat di lapangan (Gambar 1b).

MasaTair-masaTair Parangwedang dan Muncaning (Parangtribun) pada foto udara berskala 1:70000 muncul pada zona kira, jatuh pada (pasir) yang oleh para ahli geologi dikategorikan sebagai batuan dalam sehingga penunçulan maaTair yang terjadi termaksud kategori masaTair permanen dan bahkan masaTair asin. Kedua masaTair tersebut lebih jelas pada foto udara yang dibuatkan menjadi berskala 1:5 000 (Gambar 2a dan 3a), pemulian masaTair tersebut kemampuannya di lapangan dapat dilihat pada Gambar 2b dan 3b. MasaTair-masaTair Muda, Gembvawenj dan Bii pada foto udara yang dibuatkan menjadi berskala 1:3 000 muncul pada pembahasan kerang perubahan batuan
<table>
<thead>
<tr>
<th>No</th>
<th>Nama</th>
<th>Das</th>
<th>Keterangan Eksistensi Lahan (Ha)</th>
<th>Keterangan Dasar Lahan (Ha)</th>
<th>Keterangan Dasar Penguapan Lahan (Ha)</th>
<th>Daftar Dasar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sungai Sendang</td>
<td>8.2</td>
<td>2.5</td>
<td>3.5</td>
<td>6.4</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>Sungai Gapan</td>
<td>7.5</td>
<td>1.6</td>
<td>2.0</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>Sungai Duwan</td>
<td>12.6</td>
<td>1.4</td>
<td>1.2</td>
<td>2.5</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>Sungai Ngajen</td>
<td>2.9</td>
<td>1.2</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>Sungai Warakan</td>
<td>1.4</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>Sungai Nonggi</td>
<td>2.9</td>
<td>1.2</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>Sungai Monggi</td>
<td>1.4</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>Sungai Dadap</td>
<td>1.4</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>Sungai Binis</td>
<td>1.4</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>Sungai Purangan</td>
<td>1.4</td>
<td>1.6</td>
<td>6.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Jumlah</td>
<td>776.11</td>
<td>1.4</td>
<td>18.8</td>
<td>78.8</td>
<td>459.7</td>
<td>195</td>
</tr>
</tbody>
</table>

Sumber: Peta Peta Alkal dan Das, Peta Bantah Lahan, Analisis Penguapan Lahan
3. Hubungan Terhadap Tekanan

Berdasarkan hasil identifikasi karakteristik hidrologi, air permukaan dan hasil penelitian hidrogeomorfologi, seperti ditemukan pada Peta 4 (Gambar 4) dapat ditemukan bahwa Sisi Das (Wairata, Wainong, Dindu) berdasarkan potensi ekosistem bentengal (Tabel 3) kemungkinan besar perlu perbaikan baruan gamping (P1) seluas 4.32 ha (4.94 ha) dan tinggi pelancar bangunan (P2) seluas 9.62 ha (35.69 ha) memanfaatkan cadangan air tanah. Berdasarkan analisis dan sintesis asas peraturan dan landasan kebijakan, hasil penelitian dan bukti-bukti gua, bahwa berdasarkan analisis dan sintesis asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitian geologi, dan hasil penelitian asas peraturan dan landasan kebijakan, bahwa teknik yang digunakan untuk menangani air permukaan dan hasil penelitian hidrogeologi, hasil penelitan
2) Foto udara pioniristik hitam putih berbisa 1:10 000.
Foto udara pioniristik hitam putih berbisa 1:10 000 hasil pemotretan tahun 1996 memperlihatkan kualitas sebup baik dengan rata-rata kontras. Objek-objek yang terlihat jelas seperti jalan, sungai, benduk-benduk geosial, kehirisan tanah lebih riang dan lebih jelas. Pada foto udara berbisa 1:10 000 kesanapan vegetasi dapat dibedakan antara tanaman kerat yang mempunyai strata yang lebih tinggi dan tanaman serumpun yang mempunyai strata yang lebih rendah. Tanaman kerat pada foto udara tampak dengan jelas namun belum lebih jelas lagi jika kebuntuannya menggeragun, benduk-benduk kehieran yang mempunyai strata tanah yang berbeda kesanapan jalan pohon (tejar) tampak jelas pada foto udara berbisa 1:10 000 mencerminkan lebih baik kemanajemen menggunakannya sebagai atap lain bebug perhutanan.

3) Foto Udara pioniristik hitam putih yang diambil mengunakan berbisa 1:5 000. Foto udara pioniristik hitam putih berbisa 1:5 000 yang diambil menggunakan pemotretan secara horizontal foto udara pioniristik hitam putih berbisa 1:10 000 tahun 1996. Foto udara pioniristik hitam putih berbisa 1:5 000 memiliki kelebihan untuk menunjukkan kesanapan kementungan air (sawah dan tambak) berdiameter kurang lebih 50 - 100 m. Sementara itu, untuk menunjukkan lebih sempurna dan detail lebih jelas lagi, maka pemotretan harus menggunakan berbisa 1:10 000. Proses pemotretan harus lebih cermat dan teliti, sehingga detail detail pada berbisa 1:10 000 dapat dilihat jelas.

KESIMPULAN DAN SARAN

Kesimpulan

1) Foto udara pioniristik hitam putih berbisa 1:25 000 mempunyai kesanapan spesifik lebih baik dibanding foto udara berbisa 1:10 000 dalam menggambarkan kesanapan hutan hujan tropika, sehingga sangat membantu dalam desain-pemetaan, lebih efisien dalam waktu dan tenaga.

2) Foto udara pioniristik hitam putih berbisa 1:10 000 mempunyai kesanapan tingkat kecakapan tinggi dan lebih sempurna dalam menggambarkan kesanapan belitan pohon, sehingga sangat membantu dalam kegiatan-teknis seperti penyusunan komersial, analisis pemetasan, dan penyusunan rencana tata ruang wilayah persemaian.

3) Hasil identifikasi kesanapan-kementungan berbisa melalui foto udara berbisa 1:25 000 dan 1:10 000 dapat disajikan dalam bentuk peta yang sepenuhnya diperoleh dari kaca, analisis fenomena, dan penyusunan rencana tata ruang wilayah persemaian.
penggunaan bulan), pada pola aliran dan daerah aliran sungai, pada hidroecosifologi dan pada konservasi maksa air tanah.

4) Hasil identifikasi karakteristik hidrologi yang dilakukan pada analisis dan analisis data dan informasi kemampuan-kemampuan bantuan lainnya dimana berarti di wilayah buatan dapat dipengaruhi kemungkinan penanaman sebagai berikut.

a) tinggi titik penutupan musim: musim hujan bulan yang aliran sungai, musim Patungwedang dan Patungwedang muncul maksimal saat musim hujan, dan musim musim bebas buatan pada pembukaan terus dianalisis dan daerah buatan gunung dan batu batuan terutama untuk analisis.

b) simpulan Sub-DAS yang dapat dipengaruhi beratnya data pertanahan buatan gunung dan kumpulan karst yang hangus berfungsi sebagai daerah gunung atau tanah.

5) Berdasarkan hasil perhitungan secara kasar yang dilakukan pada hujan satuan wilayah alitler dengan data fakultas atau air tanah, diperolehkan saat Titoturbojo meningkatnya cadangan air tanah sebesar 3,4 juta meter kubik, dan daerah Patungwedang sebesar 2,4 juta meter kubik.

Peralatan observasi foto ada yang menunjukkan bahwa foto udara berkala 1:25 000 lebih menunjukkan kemampuan fiskal bersangkutan dengan kemampuan spesialisasi, foto udara berkala 1:10 000 lebih menunjukkan kemampuan bantam pengukuran luas secara rinci, sedang foto adu prakarsa fotongrafis menjadi skala 1: 5 000 menunjukkan kemampuan pemancuran suatu suatu pada.

Sarana

1) Pencarian hidrologi dengan bantuan citra penginderaan jauh berkala besar (1:25 000 dan 1:10 000) yang dilakukan di daerah pesawat Patungwedang yang dicari oleh gunakan peta bulan musulman daerah pesawat secara umum, oleh karena itu perlu dicoba untuk daerah pesawat lain yang memenuhi ciri khas yang berbeda.

2) Hasil kompilasi cadangan air tanah potensial di daerah Titoturbojo perlu dianalisislanjuti untuk dikonversi menjadi cadangan air tanah daerah Patungwedang, mengingat sebagian besar keberlanjutan daerah tersebut dibuang pada musim hujan (UFW).
DAFTAR PUSTAKA

Gambar 1a. Kejadian pencurian air (futatul) akibat perubahan Kunci Tinggi Lereng usai Umumnya aluvial ujung-ujung sungai (sumber: Foto udara Paskomatik Hizan Putih Skala Diperbesar hingga ≥ 1:5000)

Gambar 1b. Keadaan materi di isapangis sebagai materi Bitu termasuk dalam sub-SAS Wurukkan (foto isapangis diambil bulan Juni 2000)
Gambar 2a. Kejadian pembentukan ar (Material) pada jaringan dasar (lava) pada tata sebar Panstromatik hitam pada skala 1:5000

Gambar 2b. Kemampuan menter atau bagai menter parangguling yang dicirikan oleh air pasir dan asli (fotografi belum asli 2009)
Gambar 3a. Kunjungan pemunculan air (Masa air) pada jalan patahan (Susur) pada foto udara Paskromotsik hitam putih skala diperbesar hingga 1 : 5000

Gambar 3b. Kesampahan massa air di tepianan sebagai massa air Parangtritis (Mancingan). Foto diambil bulan Juni 2000
Gambar 4a. Kejadian pemunculan sir (mencari) pada peralahan Leuang di kawasan hutan (Becah Villanik - Batuan Ganggong) dan banyak berasal dari Kecamatan Kulosowan.
Sumber: Foto wiper Pascawilhak hitam putih skala dipertahani hingga a : 5000

Gambar 4b. Kesan yang munculnya di lapangannya sebagai hasil sir Hiji terkait sub-DAS Hiji (Foto lapangan disebut pada Juni 2000)
Gambar 5
Stereogram Foto Udara Parameritis dan Sekitarnya.
Pewartaan Bulan November 1992
Gambar 1. Peta lokasi sampel daerah Pagojirito dan sekitarnya Propinsi Daerah Istimewa Yogyakarta
Gambar 2. Peta pola aliran dan Daerah Aliran Sungai Darah Parangtritis dan sekitarnya Propinsi Daerah Istimewa Yogyakarta
Gambar 3. Peta ekologi keadaan hutan hujan tropis Parangrejo dan sekitaranya
Propinsi Daerah Istimewa Yogyakarta
Gambar 4. Peta bidanggeomorfologi daerah Parangtritis dan sekitarnya
Propinsi Daerah Istimewa Yogyakarta
<table>
<thead>
<tr>
<th>No.</th>
<th>Lembah</th>
<th>Letak Leter</th>
<th>Panjang Kode</th>
<th>Panjang Kode 1</th>
<th>Panjang Kode 2</th>
<th>Panjang Kode 3</th>
<th>Panjang Kode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Krian 1</td>
<td>750.000</td>
<td>1741.600</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>Krian 2</td>
<td>750.325</td>
<td>1741.600</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>Krian 3</td>
<td>750.400</td>
<td>1741.600</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>Krian 4</td>
<td>750.600</td>
<td>1741.600</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

*Catatan: Data di atas diperoleh dari penelitian sebelumnya.
<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Sumber Air</th>
<th>EC Miliroh</th>
<th>PH</th>
<th>Bantuk Penggunaan Lahan</th>
<th>Bantuk Lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kerik 1</td>
<td>799</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Athural</td>
</tr>
<tr>
<td>2</td>
<td>Kerik 2</td>
<td>314</td>
<td>6.0</td>
<td>Tinggal</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>3</td>
<td>Kerik 3</td>
<td>640</td>
<td>6.0</td>
<td>Tinggal</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>4</td>
<td>Kerik 4</td>
<td>666</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Athural</td>
</tr>
<tr>
<td>5</td>
<td>Sendangpan, Kerik</td>
<td>480</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Nyaris</td>
</tr>
<tr>
<td>6</td>
<td>Sendangpan, TPR</td>
<td>620</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>7</td>
<td>Sendangpan, TPR</td>
<td>620</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>8</td>
<td>Sanga, Sendangpan</td>
<td>490</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>9</td>
<td>Sanga, Gunungsewu</td>
<td>304</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
<tr>
<td>10</td>
<td>Selok, Gupi</td>
<td>500</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>11</td>
<td>Paranggriya 1</td>
<td>402</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
<tr>
<td>12</td>
<td>Paranggriya 2</td>
<td>537</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
<tr>
<td>13</td>
<td>Paranggriya 3</td>
<td>727</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Dataran Pasir</td>
</tr>
<tr>
<td>14</td>
<td>Paranggriya 4</td>
<td>233</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
<tr>
<td>15</td>
<td>Paranggriya 5</td>
<td>427</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
<tr>
<td>16</td>
<td>Dewuran 1</td>
<td>532</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>17</td>
<td>Dewuran 2</td>
<td>540</td>
<td>7.0</td>
<td>Tinggal</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>18</td>
<td>Dewuran 3</td>
<td>555</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>19</td>
<td>Dewuran 4</td>
<td>1087</td>
<td>7.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>20</td>
<td>Dewuran 5</td>
<td>598</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Daerah Nyaris</td>
</tr>
<tr>
<td>21</td>
<td>Pasang tegun 1</td>
<td>400</td>
<td>5.0</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>22</td>
<td>Mata air petis</td>
<td>395</td>
<td>5.0</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>23</td>
<td>Cengal 1</td>
<td>357</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>24</td>
<td>Cengal 2</td>
<td>614</td>
<td>5.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>25</td>
<td>Cengal 3</td>
<td>652</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>26</td>
<td>Cengal 4</td>
<td>521</td>
<td>6.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>27</td>
<td>Cengal 5</td>
<td>426</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Lebar Perbukitan</td>
</tr>
<tr>
<td>28</td>
<td>Cengal 6</td>
<td>915</td>
<td>7.0</td>
<td>Permukiman</td>
<td>Kipas Athural</td>
</tr>
<tr>
<td>29</td>
<td>Cengal 7</td>
<td>432</td>
<td>7.0</td>
<td>Permukiman</td>
<td>Daerah Nyaris</td>
</tr>
<tr>
<td>30</td>
<td>Cengal 8</td>
<td>498</td>
<td>6.5</td>
<td>Permukiman</td>
<td>Daerah Pasir</td>
</tr>
</tbody>
</table>