Implementasi Kinematika Trajectory Lingkaran pada Robot Roda Mecanum

https://doi.org/10.22146/juliet.v3i1.74760

Fahmizal Fahmizal(1*), Angga Priyatmoko(2), Afrizal Mayub(3)

(1) Departemen Teknik Elektro dan Informatika, Universitas Gadjah Mada
(2) Departemen Teknik Elektro dan Informatika, Universitas Gadjah Mada
(3) Pascasarjana Pendidikan IPA, Universitas Bengkulu
(*) Corresponding Author

Abstract


Abstract - The movement of the non-holonomic mobile robot is still not efficient because it can only move forward, backward, and turn so that it requires a wheel platform that is able to move more efficiently and more variedly. The use of mecanum wheels on wheeled robots is one of the best solutions because the mecanum wheels can move in all directions and are more stable. This paper proposes a mechanical robot trajectory kinematics design with a simple and easy mechanism to implement using an embedded system such as using Arduino. From the results of this study, it was found that the robot was able to maneuver following a circular trajectory with a radius of 50 cm in 7 seconds.

Keywords - mobile robot, mecanum robot, inverse kinematics, trajectory

 

Intisari - Pergerakan mobile robot non holonomic masih belum efisien karena hanya dapat bergerak maju, mundur, berbelok sehingga membutuhkan platform roda yang mampu bergerak lebih efisien dan lebih variatif. Penggunaan roda mecanum pada robot beroda menjadi salah satu solusi terbaik karena roda mecanum dapat bergerak ke segala arah dan lebih stabil. Makalah ini mengusulkan sebuah perancangan desain kinematika trajectory robot mecanum dengan mekanisme yang sederhana dan mudah untuk diimplementasikan menggunakan embeded system seperti menggunakan Arduino. Dari hasil penelitian ini diperoleh bahwa robot mampu bermanuver mengikuti trajectory lingkaran  dengan radius 50 cm dalam waktu 7 detik.

Kata kunci - robot beroda, roda mecanum, invers kinematika, trajectory

Full Text:

PDF


References

[1] B. Ilon, Wheels for a course stable self propelling vehicle movable in any desired direction on the ground or some other base. U. S. A. Patent, 1975.

[2] Yadav, P. S., Agrawal, V., Mohanta, J. C., & Ahmed, M. F. (2022). A robust sliding mode control of mecanum wheel-chair for trajectory tracking. Materials Today: Proceedings.

[3] Li, S., Zhang, J., Zhao, K., Zhang, Y., Sun, Z., & Xia, Y. (2022). Trajectory tracking control for four‐mecanum‐wheel mobile vehicle: A variable gain active disturbance rejection control approach. International Journal of Robust and Nonlinear Control, 32(4).

[4] Filomeno Amador, L. D., & Castillo Castañeda, E. (2022). Kinematic and dynamic analysis of an omnidirectional mobile platform driven by a spherical wheel. Mechanical Sciences, 13(1), 31-39.

[5] Fahmizal, Kuo, C. H. (2016, August). Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control. In 2016 International Conference on Instrumentation, Control and Automation (ICA) (pp. 54-59). IEEE.

[6] Le, T. L., Nghin, D. V., & Aly, M. (2022). Design and Fabrication of Mecanum Wheel for Forklift Vehicle. In Modern Mechanics and Applications (pp. 795-810). Springer, Singapore.

[7] Adam, N., Aiman, M., Nafis, W. M., Irawan, A., Muaz, M., Hafiz, M., ... & Ali, S. N. S. (2017). Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle. In MATEC Web of Conferences (Vol. 90, p. 01077). EDP Sciences.

[8] Sun, Z., Hu, S., He, D., Zhu, W., Xie, H., & Zheng, J. (2021). Trajectory-tracking control of Mecanum-wheeled omnidirectional mobile robots using adaptive integral terminal sliding mode. Computers & Electrical Engineering, 96, 107500.

[9] Ly, T. T. K., Thai, N. H., Dzung, L. Q., & Thanh, N. T. (2020, December). Determination of kinematic control parameters of omnidirectional AGV robot with mecanum wheels track the reference trajectory and velocity. In International Conference on Engineering Research and Applications (pp. 319-328). Springer, Cham.

[10] Alakshendra, V., & Chiddarwar, S. S. (2017). Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, 87(4), 2147-2169.

[11] Kumbhar, H. (2016, August). Wireless sensor network using Xbee on Arduino Platform: An experimental study. In 2016 International Conference on Computing Communication Control and automation (ICCUBEA) (pp. 1-5). IEEE



DOI: https://doi.org/10.22146/juliet.v3i1.74760

Article Metrics

Abstract views : 741 | views : 506

Refbacks

  • There are currently no refbacks.