Rancang Bangun Sistem Pemonitor Gelombang Otak Nirkabel Berbasis Mikrokontroler
Budi Bayu Murti(1*)
(1) Gadjah Mada University
(*) Corresponding Author
Abstract
Abstract – Humans are a very complex living system composed of billions of active cells working together to form tissues. The neural network that is awakened has an information transmission system based on the body's electricity or bioelectricity. All surfaces of the human skin and body parts have electrical properties and impedance that can be detected to indicate health conditions. In the biomedical field the measurement of bioelectric signals becomes one of the important aspects. Bioelectric measurements to monitor heart conditions are known as ECG (Electrocardiography), EMG (electromyography), ENG (electroneurography). Signals from the brain are detected from electroenchepalography (EEG) signal parameters. The study was developed by a sensor system capable of noninvasive brain waves and and capable of sending signals wirelessly through RF radio waves in real-time. The device is built using a TGAM sensor, a microcontroller interface, Bluetooth device, and the LabView application. Tests were carried out to measure the range and frequency range of the EEG. The object of measurement is a human being conditioned to some state of mind. The results show that the wireless EEG signal detection system using Bluetooth transmission has been able to transmit sensor data well and can connect automatically with Arduino. The detection results can be monitored directly on the GUI display of the LabVIEW software and a graph of the frequency range can be seen.
Keywords : Wireless, EEG, LabVIEW, sensor, Bluetooth
Intisari – Manusia merupakan suatu sistem hidup yang sangat kompleks tersusun dari milyaran sel aktif yang bekerja bersama membentuk jaringan. Jaringan syaraf yang terbangun memiliki sistem transmisi informasi berdasarkan pada kelistrikan tubuh atau biolistrik. Semua permukaan kulit dan bagian tubuh manusia memiliki sifat kelistrikan dan impedansi yang bisa dideteksi untuk menunjukkan kondisi kesehatan. Di bidang biomedis pengukuran isyarat biolistrik menjadi salah satu aspek yang penting. Pengukuran biolistrik untuk memonitor kondisi jantung dikenal sebagai informasi ECG (Electrocardiography), EMG (Electromyography), ENG (Electroneurography). Sedangkan untuk sinyal dari otak dideteksi dari parameter isyarat Electroenchepalography (EEG). Pada penelitian ini dilakukan pengembangan sistem sensor yang mampu mendeteksi gelombang otak secara non-invasif dan dan mampu mengirimkan isyarat secara nirkabel melalui gelombang radio RF secara real-time. Perangkat dibangun menggunakan sensor TGAM, antarmuka mikrokontroler, piranti Bluetooth, serta aplikasi LabView. Pengujian dilakukan untuk mengukur jarak jangkau dan rentang frekuensi EEG. Objek pengukuran adalah manusia yang dikondisikan pada beberapa keadaan pikiran. Hasil penelitian menunjukkan bahwa sistem pendeteksi sinyal EEG nirkabel menggunakan transmisi Bluetooth telah dapat mengirimkan data sensor dengan baik serta dapat terhubung secara otomatis dengan Arduino. Hasil pendeteksian dapat dimonitor secara langsung pada tampilan GUI software LabVIEW dan dapat diketahui grafik rentang frekuensinya.
Kata kunci : Nirkabel, EEG, LabVIEW, sensor, BluetoothFull Text:
PDFReferences
[1] Liao et al. (2012). Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. Journal of NeuroEngineering and Rehabilitation, 9:5
[2] Oneill, C. (2017, September 27). EEG Info (Electroencephalogram), Retrieved from https://cynthiaoneillcpj.wordpress.com/2017/09/27/eeg-info-electroencephalogram/
[3] Qing Zhang et al.(2018). A real-time wireless wearable electroencephalography system based on Support ector Machine for encephalopathy daily monitoring.. International Journal of Distributed Sensor Networks Vol. 14(5)
[4] Seonghun et al. (2020). Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. MDPI Sensors. 20. 4572.
[5] Wenyan et al. (2013). Design of a Wireless EEG System for Point-of-Care Applications. 39th Annual Northeast Bioengineering Conference.
[6] Tombeng, M. T., & Rumayar, R. M. (2017). Light. Controlling. System. by. Using. Brain. Waves. Sensor. Cogito Smart Journal, 240-248.
[7] Alfina, R., Arifianto, I., Astharini, D., & Wulandari, P. (2019). Mendisain. GUI. Untuk. Menampilkan. Nilai. FFT. dan. IFFT. Menggunakan. LabVIEW. TESLA, 50-56.A. S.
[8] Arga. (2020, July). Pengertian Arduino Uno dan Spesifikasinya. Retrieved from Pintar Elektro: https://pintarelektro.com/pengertian-arduino-uno/
[9] Catur. (2018, June 26). Cara. Mudah. Mengatur. Auto. Pairing. Bluetooth. HC-05. (Antar. Bluetooth. HC-05). Retrieved from Creative Project: http://www.caturcreativeproject.com./2017/05/.cara-mudah-mengatur-auto-pairing_10.html
[10] Instruments, N. (2021). National Instruments. Retrieved from What is LabVIEW?: http://www.ni.com
[11] NeuroSky. (2011). ThinkGear ASIC Module (TGAM). Retrieved from NeuroSky: http://www.neurosky.com
[12] Thomas,. T.,. James,. M.,. Shaji,. R. R.,. & Pillai,. B. C. (2016). Interpretation. of. Human. Stages. from. EEG. Signals. Using. LabVIEW.. International. Journal. of. Advanced. Research. in. Computer. and. Communication. Engineering,. 517-519.
[13] Tomonagal, K., Wakamizul, S., & Kobayashi,. J. (2015). Experiments. on. classification. of. electroencephalography. (EEG). signals. in. imagination. of . International. Conference. on. Control,. Automation. and. Systems. direction. using. a. wireless. portable. EEG. headset,. 1805-1810.
[14] Sleep Architecture. (2011). Retrieved from http://evolutionarypsychiatry.blogspot.com/2011/01/sleep-architecture.htmlDOI: https://doi.org/10.22146/juliet.v2i2.70751
Article Metrics
Abstract views : 2884 | views : 3616Refbacks
- There are currently no refbacks.
SINTA 4 accredited based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol. 2 No. 1 (2020) - Vol. 6 No. 1 (2025)
e-ISSN: 2746-2536