Desain dan Implementasi Sistem Navigasi pada Automated Guided Vehicle (AGV)

https://doi.org/10.22146/juliet.v2i1.64830

Fakih Irsyadi(1*), Dinar Nugroho Pratomo(2), Sugeng Julianto(3), Muhammad Shofuwan Anwar(4), Alfonzo Aruga Paripurna Barus(5)

(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(5) Universitas Gadjah Mada
(*) Corresponding Author

Abstract


This research aims to build mechanical system of Automated Guided Vehicle (AGV) and navigation system for AGV.  The navigation system consists of RFID reader and rotary encoder. The testing result show that mechanical system of AGV was successfully finished. There is a mechanical problem on drive system of AGV. Each part of navigation system works well according to design. Line sensor can be used for path detection with the given threshold values. Encoder can be used to measure the speed of AGV with the maximum error accuracy less than 2 rpm. This result shows that every part of AGV is ready to run localization and navigation algorithm, even though, it needs to do some improvement on driving parts.


Full Text:

PDF


References

[1] Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 - A Glimpse. Procedia Manufacturing, 20, 233–238. https://doi.org/10.1016/j.promfg.2018.02.034

[2] Wicaksono H, and Nilkhamhang I. (2017). Glocal Controller-based Formation Control Strategy for Flexible Material Handling., IEEE International Conference of the Society of Instrument and Control Engineers (SICE): 787-792.

[3] Draganjac I., et al. (2016). Decentralized Control of Multi-AGV Systems in Autonomous Warehousing Applications., IEEE Transactions on Automotion Science and Engineering. 13(4): 1433 – 1447.

[4] P. K. Mohanty, A. K. Sah, V. Kumar and S. Kundu, "Application of Deep Q-Learning for Wheel Mobile Robot Navigation," 2017 3rd International Conference on Computational Intelligence and Networks (CINE), Odisha, India, 2017, pp. 88-93, doi: 10.1109/CINE.2017.11.

[5] Da Mota, F. A. X., Rocha, M. X., Rodrigues, J. J. P. C., De Albuquerque, V. H. C., & De Alexandria, A. R. (2018). Localization and navigation for autonomous mobile robots using petri nets in indoor environments. IEEE Access, 6, 31665–31676. https://doi.org/10.1109/ACCESS.2018.2846554

[6] Joni, K., Ulum, M., & Abidin, Z. (2016). Robot Line Follower Berbasis Kendali Proportional-Integral-Derivative (PID) Untuk Lintasan Dengan Sudut Ekstrim. Jurnal Infotel, 8(2), 138–142. https://doi.org/10.20895/infotel.v8i2.129

[7] Hakan Temeltas. (2018). a Real-Time Localization Method for Agvs in Smart Factories. 50(2), 45–50.

[8] T. Bräunl, “Driving Robots,” in Driving Robots. In: Embedded Robotics, 3rd ed., Springer, Berlin, Heidelberg, 2008, pp. 131–135.

[9] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, 2nd ed. New York: Cambridge University Press, 2010.

[10] Susilo, D. B., Wibawanto, H., & Mulwinda, A. (2018). Prototype Mesin Pengantar Barang Otomatis Menggunakan Load Cell Berbasis Robot Line Follower. Jurnal Teknik Elektro, 10(1), 23–29. https://doi.org/10.15294/jte.v10i1.12277

[11] Rotzbua, Arduino library for MFRC522 and other RFID RC522 based modules. (2020). Retrieved from https://github.com/miguelbalboa/rfid



DOI: https://doi.org/10.22146/juliet.v2i1.64830

Article Metrics

Abstract views : 258 | views : 251

Refbacks

  • There are currently no refbacks.