Identifikasi Escherichia coli dan Salmonella spp pada Karkas Sapi di Rumah Potong Hewan di Banyuwangi dan Resistensi terhadap Antibiotika

Identification of Escherichia coli and Salmonella spp on bovine carcass from slaughter house in Banyuwangi and multidrug-resistance

Faisal Fikri*, Muhammad Thohawi Elziyad Purnama, Amung Logam Saputro, Iwan Sahrial Hamid

1Departemen Kedokteran Dasar Veteriner, 2Departemen Anatomi Veteriner, 3Departemen Klinik Veteriner, Fakultas Kedokteran Hewan, Universitas Airlangga
Kampus C UNAIR, Jl. Mulyorejo, 60115, Surabaya
*Email:faisalfikriunair@gmail.com

Naskah diterima : 23 November 2017, direvisi : 17 April 2018, disetujui : 30 Mei 2018

Abstract

Food borne disease can be transmitted through Escherichia coli and Salmonella spp contamination. The contamination of microorganisms with pathogenic potentials on bovine carcasses results in food borne illness. The aim of this study was to identify multidrug-resistance of Escherichia coli and Salmonella spp on carcass samples that isolated from slaughter house in Banyuwangi. Samples were collected from district of Banyuwangi, Rogojampi, Genteng and Kalibaru. This study used cross sectional study with assumption of prevalence at 50% in each contaminant, confidence level 95% and standard of error at 10%. By the number of samples should reach 96 samples. The result showed that seven samples (7,3%) were positive Escherichia coli and none samples (0%) were positive Salmonella spp. The multidrug-resistance of Escherichia coli showed that Cephalotin (42,9%), Trimethoprim (14,3%) and Erythromycin (42,9%) whereas Ampicillin, Enrofloxacin, Chloramphenicol and Tetracycline were sensitive against Escherichia coli.

Key words: multidrug-resistance, Banyuwangi, bovine carcass, Escherichia coli, Salmonella spp

Abstrak

Food borne disease dapat ditularkan melalui cemaran bakteri Escherichia coli dan Salmonella spp. Cemaran mikroorganisme dengan potensi patogen yang tinggi pada karkas sapi mengakibatkan kasus food borne illness. Penelitian ini bertujuan untuk mengidentifikasi resistensi antibiotik dari bakteri Escherichia coli dan Salmonella spp pada karkas sapi yang diambil dari rumah potong hewan di Kabupaten Banyuwangi. Sampel dikoleksi dari Kecamatan Banyuwangi, Rogojampi, Genteng dan Kalibaru. Penelitian ini menggunakan kajian cross sectional dengan prevalensi diasumsikan 50% setiap cemaran bakteri, tingkat kepercayaan 95% dan tingkat kesarahan 10%, sehingga didapatkan 96 sampel yang harus diambil untuk diuji. Hasil penelitian menunjukkan bahwa tujuh sampel (7,3%) positif Escherichia coli dan tidak ada sampel (0%) positif Salmonella spp. Hasil resistensi antibiotik bakteri Escherichia coli menunjukkan bahwa jenis Sefalotin (42,9%), Trimethoprim (14,3%) dan Eritromisin (42,9%) sedangkan Ampisilin, Enroflosasins, Kloramfenikol dan Tetrasiklin masih dinyatakan sensitif terhadap Escherichia coli.

Kata kunci: resistensi antibiotik, Banyuwangi, karkas sapi, Escherichia coli, Salmonella spp

Pendahuluan

Karkas merupakan otot rangka yang menempel pada tulang dan telah dipisahkan dengan cara lazim, aman dan layak untuk dikonsumsi manusia. Aspek Aman, Sehat, Utuh dan Halal (ASUH) merupakan syarat utama penanganan karkas hingga dapat didistribusikan. Karkas yang aman merupakan upaya utama dan harus dijamin agar menjaga rasa aman dan nyaman dalam konsumsi bahan produk asal hewan sehingga memenuhi standart keamanan pangan (food safety) (Cheng dan Sun, 2008).

Kualitas karkas dapat ditentukan dari cara pemotongan dan metode penanganan dari ternak. Kuantitas dan kualitas karkas menjadi faktor penting yang menentukan nilai karkas. Nilai karkas dapat ditinjau dari tipe ternak asal karkas, lemak
intramuscular atau marbling di dalam sturktur otot. Faktor nilai karkas dapat diukur secara objektif, misal berat karkas, sedangkan secara subyektif dapat diukur dengan pengujian organoleptik atau metode panel (Cheng dan Sun, 2008).

Faktor kualitas karkas meliputi warna, keempukan dan tekstur, aroma, citarasa dan jus karkas (juiciness). Selain itu, lemak intramuscular dan susut masak (cooking loss) yaitu berat sampel karks yang hilang selama pemasakan atau pemanasan, retensi cairan dan pH karkas ikut menentukan kualitas karks (Anil et al., 2002).

Food borne disease adalah pola persebaran penyakit yang terpapar melalui makanan dengan manifestasi gejala yang terdapat pada abnormalitas fisiologi pencernaan dan menyebaran angka morbiditya yang tinggi. Kasus food borne disease dititik beratkan pada aspek mikroorganisme infeksius yang terhimpun melalui bahan makanan sehingga memberikan potensi terjadinya penyakit strategis. Penyebab terbesar penularan food borne disease disebabkan oleh penjaminan kualitas dan mutu keamanan karkas melalui sanitasi dan higienis dari sumber karkas (Gerberding et al., 2004).

Salah satu penyebab food borne disease adalah cemaran bakteri Escherichia coli dan Salmonella spp. Bakteri Salmonella spp dalam jumlah yang banyak memiliki daya patogen yang tinggi dan bila mencermari makanan akan menjadi penyebab terjadinya food borne illness (Kusumaningsih, 2010).

Penggunaan antibiotik diharapkan dapat menurunkan risiko infeksi pada ternak dari bakteri penyebab food borne disease. Penggunaan antibiotik yang tidak sesuai dengan dosis dan pemilihan secara tepat dapat mengakibatkan resistensi bakteri terhadap antibiotik tertentu. Kejadian resisten bakteri terhadap antibiotik akan menjadi masalah baru karena efektivitas yang diberikan senyawa yang harusnya menghambat pertumbuhan bakteri justru tidak memberikan efek yang signifikan. Penggunaan antibiotik dalam pakan juga menjadi salah satu penyebab resistensi beberapa bakteri terhadap antibiotik sehingga perlu pengawasan penggunaan antibiotik secara tepat (Kang et al., 2005).

Penelitian bertujuan untuk mengidentifikasi resistensi ragam antibiotik terhadap bakteri Escherichia coli dan Salmonella spp pada karkas sapi yang di isolasi dari rumah potong hewan di Kabupaten Banyuwangi.

Materi dan Metode

Pengambilan Sampel

Sampel diambil berdasarkan kajian cross sectional dengan prevalensi diasumsikan 50% setiap cemaran bakteri, tingkat kepercayaan 95% dan tingkat kesalahan 10%, sehingga didapatkan 96 sampel yang harus diambil. Sampel tersebut terdistribusi di empat kecamatan dengan populasi pemotongan tinggi di Kabupaten Banyuwangi yakni Kecamatan Banyuwangi, Rogojampi, Genteng dan Kalibaru. Distribusi data tersebut dapat dilihat pada Tabel 1 berikut:

<table>
<thead>
<tr>
<th>No</th>
<th>Kecamatan</th>
<th>Jumlah sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banyuwangi</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Rogojampi</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Genteng</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Kalibaru</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>96</td>
</tr>
</tbody>
</table>
Pengujian *Escherichia coli* dan *Salmonella spp*

Pengujian Resistensi Ragam Antibiotik
Pengujian resistensi antibiotik terhadap bakteri *Escherichia coli* dan *Salmonella spp* menggunakan metode difusi (*disk diffusion method*). Bakteri yang dinyatakan tumbuh diisolasi pada media *Nutrient Agar* (NA) dan *Brain Heart Infusion* (BHI), kemudian dimasukkan incubator Memmert® 30°C selama 48 jam. Isolat 0,1 ml bakteri dicampur dengan suspense Buffered Peptone Water (BPW) 0,1% sebanyak 9 ml sehingga sesuai dengan 0,5 McFarland. Suspense bakteri ditanam pada permuakaan media *Nutrient Agar* (NA) secara merata sebanyak 0,1 ml dengan menggunakan hockey stick. Persiapan disk antibiotik yakni sefalotin 30 μg/ml, trimethoprim 25 μg/ml, eritromisin 15 μg/ml, ampicillin 10 μg/ml, enrofloksasin 5 μg/ml, kloramfenikol 30 μg/ml dan tetrasiklin 30 μg/ml. Ragam antibiotik tersebut ditanam pada media *Nutrient Agar* (NA) setelah kuman disebarkan merata. Media *Nutrient Agar* (NA) selanjutnya dimasukkan incubator Memmert® 30°C selama 48 jam. Penentuan hasil berdasarkan diameter zona terang atau zona hambat yang terbentuk kemudian diukur menggunakan Caliper gauge®. Hasil perhitungan diameter yang didapat dibandingkan dengan standar tabel 2 *Clinical and Laboratory Standards Institute* (CLSI, 2012).

<table>
<thead>
<tr>
<th>No</th>
<th>Golongan</th>
<th>Antibiotik</th>
<th>Dosis Disk (μg)</th>
<th>Standard interpretasi hasil zona diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β-Laktam</td>
<td>Ampisilin (AMP)</td>
<td>10</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>Sefalosporin</td>
<td>Sefalotin (KF)</td>
<td>30</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>Aminoglikosida</td>
<td>Gentamisin (CN)</td>
<td>10</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptomisin (S)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fluoroquinolon</td>
<td>Siprofloksasin (CIP)</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enrofloksasin (ENR)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asam nalidiksat (NA)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Makrolida</td>
<td>Eritromisin (E)</td>
<td>15</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>Fenikol</td>
<td>Kloramfenikol (C)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sulfonamide</td>
<td>Trimethoprim (SXT)</td>
<td>1,25/23,75</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>Tetrasiklin</td>
<td>Tetrasiklin (TE)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

S= Sensitif; I= Intermediate; dan R= Resisten

Tabel 2. Standar interpretasi diameter zona hambat

Analisis Data

Data yang didapat selanjutnya dianalisis secara deskriptif dengan memaparkan hasil presentase bakteri *Escherichia coli* dan *Salmonella spp* yang timbul dan jenis antibiotik yang resisten dengan diperkuat tabel hasil.

Hasil dan Pembahasan

Berdasarkan hasil Tabel 3 dapat dilihat bahwa bakteri *Escherichia coli* yang melebihi ambang Standar Nasional Indonesia (SNI) yakni sekitar >3 APM terdapat pada Kecamatan Banyuwangi (4,2%)
dan Rogojampi (3,1%). Hasil sesuai standard SNI, yakni <3 APM terdapat pada Kecamatan Genteng dan Kalibaru. Hasil uji bakteri *Salmonella spp* menunjukkan hasil negatif untuk semua sampel di setiap kecamatan.

Tabel 3. Hasil pengujian bakteri *Escherichia coli* dan *Salmonella spp* yang melebihi SNI

<table>
<thead>
<tr>
<th>No</th>
<th>Kecamatan</th>
<th>Sampel Escherichia coli yang melebihi ambang</th>
<th>Sampel positif Salmonella spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banyuwangi (n=24)</td>
<td>4 (4,2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2</td>
<td>Rogojampi (n=24)</td>
<td>3 (3,1)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>3</td>
<td>Genteng (n=24)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>4</td>
<td>Kalibaru (n=24)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total (n=96)</td>
<td></td>
<td>7 (7,3%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Berdasarkan hasil Tabel 4 uji resistensi terhadap ragam antibiotik dapat dilihat bahwa bakteri *Escherichia coli* resisten terhadap sefalotin (42,9%), trimethoprim (14,3%) dan eritromisin (42,9%). Antibiotik jenis ampilisin, enrofloxasin, kloramfenikol dan tetrasiiklin masih sensitif terhadap *Escherichia coli*.

Tabel 4. Hasil resistensi ragam antibiotik terhadap bakteri *Escherichia coli*

<table>
<thead>
<tr>
<th>Antibiotik</th>
<th>Persentase Escherichia coli yang resisten (%)</th>
<th>Total (%) N= 96</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banyuwangi (n=4)</td>
<td>Rogojampi (n=3)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ampisilin</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sefalotin</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Enrofloxasin</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kloramfenikol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tetrasiiklin</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eritromisin</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Standart Nasional Indonesia memberikan syarat minimal cemaran bakteri *Escherichia coli* <3 APM (SNI, 2008). Hasil yang telah diidentifikasi menunjukkan pada Kecamatan Banyuwangi (4,2%) dan Rogojampi (3,1%) sampel lebih dari standart SNI. Bakteri *Escherichia coli* merupakan flora normal pada saluran pencernaan makhluk hidup. Bakteri *Escherichia coli* juga sering ditemukan sebagai kontaminan yang terdapat pada lantai, alat pemotong hewan dan air yang belum tersanitasi (Haileselassie et al., 2013). Proses pemisahan kulit dengan karkas yang
dilakukan di lantai tanpa digantung terlebih dahulu berpotensi tercemar Escherichia coli (Fikri et al., 2017).

Kasus kolibasiosis pernah dilaporkan di Bangladesh sebesar 49% (Hossain et al., 2014), Zimbabwe 21% (Saidi et al., 2012), Kashmir 19% (Ahmad et al., 2012) dan China 21% (Cheng et al., 2012). Kolibasiosis dapat ditularkan melalui infeksi maupun kontak dengan peralatan atau cemaran lingkungan. Interaksi antara manusia dengan hewan juga memiliki potensi penyakit kolibasiosis. Feses dari hewan yang telah dicemari oleh bakteri Escherichia coli dapat menimbulkan kontaminasi di lingkungan bahkan dapat menginfeksi melalui udara (Tao et al., 2012).

Bakteri Escherichia coli yang telah diidentifikasi memiliki resistensi terhadap sefalotin (42,9%), trimethoprim (14,3%) dan eritromisin (42,9%). Sefalotin merupakan antibiotik generasi I dari sefalosporin. Sefalotin memiliki mekanisme kerja seperti penisilin dan golongan β-laktamase yang bersifat bakterisida. Sefalotin efektif terhadap bakteri gram positif dengan menghalangi sintesis protein dinding sel bakteri yang berupa enzim transpeptidase sehingga menjadi tidak stabil. Ketidakstabilan dinding sel dapat meningkatkan osmotic dan berujung pada lisisnya dinding sel bakteri (Anacona et al., 2015).

Trimethoprim merupakan sebuah antibiotik kombinasi antara sulfametoksazole dan trimethoprim. Mekanisme kerja antibiotik dengan menghambat Para Amino Benzoic Acid (PABA) menjadi asam folat dan reduksi dihidrofolat menjadi tetrahidrofolat. Enzim reduktase bakteri lebih sensitif dibandingkan dengan manusia apabila mendapat paparan trimethoprim sehingga tidak mungkin pembentukan asam folat pada manusia akan terganggu. Trimethoprim merupakan antibiotik pilihan pada penyakit infeksi saluran kemih (Fraser et al., 2012).

Eritromisin merupakan antibiotik golongan makrolida dan bersifat bakteriostatik. Eritromisin aktif melawan bakteri gram positif dan negatif sehingga dapat dikategorikan sebagai antibiotik spectrum luas.
Mekanisme kerja dengan menghambat RNA dependen bakteri pada saat elongasi rantai polipeptida dan berikatan pada 50S ribosom sub unit. Hasil akhir hambatan dapat memblokade enzim transpeptidase sehingga terjadi kegagalan sintesis protein bakteri (Popowska et al., 2012).

Resistensi antibiotic dapat disebabkan penggunaan yang tidak rasional baik berupa dosis dan durasi obat, penggunaan monoterapi tanpa adanya kombinasi, lemahnya pengawasan peredaran antibiotik, peredaran yang terlalu bebas secara komersial dan minimnya penelitian tentang resistensi antibiotic (Chen dan Sikic, 2012). Secara molekuler kemampuan mutagenic bakteri terhadap plasmid yang mengandung informasi dehidrofolat reduktase dapat mengakibatkan resisten terhadap trimethoprim (Sanchez et al., 2012). Bakteri juga memiliki kemampuan di dalam gen untuk menambahkan gugus metil (CH₃) pada rRNA sehingga bakteri tetap dapat mensintesis protein. Aktivitas sintesis protein yang tetap bertahan dapat membuat bakteri resisten terhadap eritromisin (Guilfoile dan Alcamo, 2007). Hal ini memperkuat penelitian Efrianto (2014), pernah terjadi resistensi antibiotik eritromisin (81,7%), sefalotin (36,7%), ampasilin (25%), streptomisin (3,3%), tetrasiiklin (3,3%), enroflokasin (1,7%) dan trimethoprim (1,7%) terhadap bakteri Escherichia coli pada sapi potong yang diimpor melalui pelabuhan Tanjung Priuk.

Kesimpulan

Sampel karkas yang dikoleksi dari rumah potong hewan di Kabupaten Banyuwangi didapati 7,3% Escherichia coli melebihi SNI serta seluruh sampel negatif Salmonella spp. Antibiotik yang resistenten yakni, jenis sefalotin (42,9%), trimethoprim (14,3%) dan eritromisin (42,9%) sedangkan ampasilin, enroflokasin, kloramfenikol dan tetrasiiklin masih dinyatakan sensitif terhadap Escherichia coli.

Ucapan Terima Kasih

Daftar Pustaka

Bai J., Paddock ZD., Shi X., Li S., An B., Nagaraja TG. 2012. Applicability of a multiplex PCR to detect the seven major Shiga toxin–producing Escherichia coli based on genes that code for serogroup-specific O-antigens and major virulence factors in cattle feces. Foodborne pathogens and disease, 9(6), 541-548.

