Karakterisasi Kultur Virus African Swine Fever Sampel Lapang Indonesia Menggunakan Kultur Sel Primer Leukosit Babi

https://doi.org/10.22146/jsv.109976

Atik Ratnawati(1), Risza Hartawan(2), Indrawati Sendow(3), Nur Syabiq Assadah(4), Harimurti Nuradji(5), Ni Luh Putu Indi Dharmayanti(6), I Wayan Teguh Wibawan(7), Ni luh Putu Ika Mayasari(8*)

(1) Sekolah Kedokteran Hewan dan Biomedis, IPB University
(2) Badan Riset dan Inovasi Nasional
(3) Badan Riset dan Inovasi Nasional
(4) Kementerian Pertanian
(5) Badan Riset dan Inovasi Nasional
(6) Badan Riset dan Inovasi Nasional
(7) Sekolah Kedokteran Hewan dan Biomedis, IPB University
(8) Sekolah Kedokteran Hewan dan Biomedis, IPB University
(*) Corresponding Author

Abstract


African Swine Fever (ASF) merupakan penyakit viral yang sangat menular dan mematikan pada babi, yang disebabkan oleh virus African Swine Fever (ASF). Sejak tahun 2018, penyakit ini telah menyebar dan menyebabkan konsekuensi sosial ekonomi yang besar terhadap industri babi di beberapa negara Asia, termasuk China, Vietnam, dan Indonesia. Penelitian ini bertujuan untuk melakukan isolasi virus ASF dari sampel lapang menggunakan kultur sel primer leukosit babi, identifikasi karakteristik hasil propagasi virus ASF secara in vitro dan respon sel leukosit terhadap inokulasi virus ASF. Sel leukosit dikoleksi dari darah babi donor yang sehat dan dikultur dalam medium plasma homolog. Propagasi dilakukan dengan menginokulasikan sampel lapang dengan kode Indonesia/2022/Pig/PSJ ke kultur sel primer leukosit babi yang konfluen (70-80%). Pengamatan morfologi sel dilakukan dengan menggunakan mikroskop cahaya setiap 24, 48, 72, 96,120, 144, and 164 jam pasca inokulasi (jpi). Sampel lapang dari kultur sel primer leukosit babi dipurifikasi dengan menggunakan metode Percoll. Pelet virus di deteksi virus ASF dengan menggunakan uji qPCR. Hasil penelitian menunjukkan adanya perubahan morfologis pada sel primer leukosit yang terinfeksi, dengan adanya reaksi hemadsorpsi (HAD) yang teramati pada 48 jpi, dibandingkan dengan sel kontrol yang tidak terinfeksi. Pengikatan eritrosit babi ke permukaan sel yang terinfeksi virus ASF, membentuk rosette-like structure. Reaksi hemadsorpsi (HAD) dapat diamati setelah 2 kali blind passage. Purifikasi virus ASF menggunakan Percoll dapat meningkatkan kemurnian virus yang ditandai dengan nilai Ct yang lebih rendah dibandingkan dengan supernatant hasil kultur sel primer leukosit babi.

Keywords


Blind passage; hemadsorpsi; purifikasi Percoll; qPCR; virus ASF

Full Text:

PDF


References

Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J.M. and Report Consortium, I.C.T.V. (2018). ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology. 99 (5): 613-614. doi:10.1099/jgv.0.001049

Balyshev, V.M., Vlasov, M.E., Imatdinov, A.R., Titov, I., Morgunov, S.Y. and Malogolovkin, A.S. (2018).

Biological properties and molecular-genetic characteristics of African Swine Fever virus isolated in various regions of Russia in 2016–2017. Russian Agricultural Sciences. 44:469-473. doi: 10.3103/S106836741805004X

Cabezón, O., Muñoz-González, S., Colom-Cadena, A., Pérez Simó, M., Rosell, R., Lavín, S., Marco, I.,

Fraile, L., de la Riva, P.M., Rodríguez, F., et al. (2017). African swine fever virus infection in Classical

swine fever subclinically infected wild boars. BMC Veterinary Research. 13: 227. doi:10.1186/s12917-0171150-0

Carrascosa, A.L., del Val, M., Santarén, J.F. and Viñuela, E. (1985). Purification and properties of African swine fever virus. Journal of Virology . 54 (2): 337–344. doi: 10.1128/jvi.54.2.337-344.1985

Carrascosa, A.L., Bustos, M.J. and Leon, P.D. (2011). Methods for growing and titrating African swine fever virus: field and laboratory samples. Current Protocols in cell biology. 53 (1): 26-14. doi:10.1002/0471143030.cb2614s53

Couacy‐Hymann, E., Kouakou, K.V., Achenbach, J.E., Kouadio, L., Koffi, Y.M., Godji, H.P., Adjé, K.E.,

Oulaï, J., Pell-Minhiaud, H.J. and Lamien, C.E. (2019). Re‐emergence of genotype I of African swine fever Virus in Ivory Coast. Transboundary and emerging diseases. 66 (2): 882-896. doi: 10.1111/tbed.13098

Dharmayanti, N.L.P.I, Sendow, I., Ratnawati, A., Settypalli, T.B., Saepulloh, M., Dundon, W.G., Nuradji,

H., Naletoski, I., Cattoli, G. and Lamien, C.E. (2021). African swine fever in North Sumatra and West Java provinces in 2019 and 2020, Indonesia. Transboundary and emerging diseases. 68: 2890–2896. doi:10.1111/tbed.14070

Dixon, L.K., Sun, H. and Roberts, H.J.A.R. (2019). African swine fever. Antiviral research. 65: 34-41. doi:10.1016/j.antiviral.2019.02.018

Droesbeke, B., Balmelle, N., Cay, A.B., Han, S., Oh, D., Nauwynck, H.J. and Tignon, M. (2024). Replication Kinetics and Infectivity of African Swine Fever Virus (ASFV) Variants with Different Genotypes or Levels of Virulence in Cell Culture Models of Primary Porcine Macrophages. Microbiology research. 15 (3): 1690-1708. doi: 10.3390/microbiolres15030112

Gaudreault, N.N., Madden, D.W., Wilson, W.C., Trujillo, J.D. and Richt, J.A. (2020). African Swine Fever Virus: An Emerging DNA Arbovirus. Frontiers in veterinary science. 7: 215. doi: 10.3389/fvets.2020.00215

Hwang, H.J., Choi, Y.S., Song, K., Frant, M. and Kim, J.H. (2023). Development and validation of a fast quantitative real-time PCR assay for the detection of African swine fever virus. Frontiers in veterinary science. 9: 1037728 doi: 10.3389/fvets.2022.1037728

Kameyama, K.I., Kitamura, T., Okadera, K., Ikezawa, M., Masujin, K. and Kokuho, T. (2022). Usability of Immortalized Porcine Kidney Macrophage Cultures for the Isolation of ASFV without Affecting Virulence. Viruses. 14 (8): 1794. doi: 10.3390/v14081794

King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D.S. and Drew, T.W. (2003). Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. Journal of virological methods. 107 (1): 53-61. doi: 10.1016/S01660934(02)00189-1

Lee, S.C., Kim, Y., Cha, J.W., Chathuranga, K., Dodantenna, N., Kwon, H.I., Kim, M.H., Jheong, W., Yoon, I.J., Lee, J.Y., et al. (2024). CA-CAS-01-A: A permissive cell line for isolation and live attenuated vaccine development against African swine fever virus. Microbiology research. 62 (2): 125-134. doi:10.1007/s1227502400116-1

León, P., Bustos, M.J. and Carrascosa, A.L. (2013). Laboratory methods to study African swine fever virus. Virus research. 173 (1): 168–179. doi: 10.1016/j.virusres.2012.09.013

Liu, Q., Ma, B., Qian, N., Zhang, F., Tan, X., Lei, J. and Xiang, Y. (2019). Structure of the African swine fever virus major capsid protein p72. Cell research. 29 (11): 953-955. doi: 10.1038/s41422-019-0232-x

Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., Li, X., Zhao, M., Ding, H., Fan, S., et al. (2022). African

Swine Fever Virus: A Review. Life. 12 (8): 1255. doi: 10.3390/life12081255

Luo, Y., Atim, S.A., Shao, L., Ayebazibwe, C., Sun, Y., Liu, Y., Ji, S., Meng, X.Y., Li, S., Li, Y., et al. (2017). Development of an updated PCR assay for detection of African swine fever virus. Archives of virology. 162: 191–199 doi: 10.1007/s00705-016-3069-3

Malmquist, W.A. and Hay, D. (1960). Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. American journal of veterinary research. 21: 104–108.

Mazloum, A., van Schalkwyk, A., Shotin, A., Igolkin, A., Shevchenko, I., Gruzdev, K.N. and Vlasova, N. (2021). Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens. 10 (5): 521 doi: 10.3390/pathogens10050521

Mazur-Panasiuk, N. and Woźniakowski, G. (2019). The unique genetic variation within the O174L gene of Polish strains of African swine fever virus facilitates tracking virus origin. Archives of virol. 164 (6): 1667-1672. doi: 10.1007/s00705-019-04224-x

Meloni, D., Franzoni, G. and Oggiano, A. (2022). Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines. 10 (5): 707. doi: 10.3390/vaccines10050707

Monteagudo, P.L., Lacasta, A., Lopez, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M.J., Vidal, E., et al. (2017). BA71∆CD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. Journal of virology. 91 (21): e01058-17. doi:10.1128/jvi.01058-17

Nguyen-Thi, T., Pham-Thi-Ngoc, L., Nguyen-Ngoc, Q., Dang-Xuan, S., Lee, H.S., Nguyen-Viet, H., Padungtod, P., Nguyen-Thu, T., Nguyen-Thi, T., Tran-Cong, T., et al. (2021). An assessment of the Economic Impacts of the 2019 African swine fever Outbreaks in Vietnam. Frontiers in veterinary science. 8: 686038. doi: 10.3389/fvets.2021.686038

Olesen, A.S., Rasmussen, T.B., Nielsen, S.S., Boklund, A., Ploegaert, T., Moonen-Leusen, B., Blome, S., Belsham, G.J. and Bøtner, A. (2022). A multi-laboratory comparison of methods for detection and quantification of African swine fever virus. Pathogens. 11 (3): 325. doi: 10.3390/pathogens11030325

Patil, S.S., Suresh, K.P., Vashist, V., Prajapati, A., Pattnaik, B. and Roy, P. (2020). African swine fever: A permanent threat to Indian pigs. Veterinary world. 13 (10): 2275. doi:10.14202/vetworld.2020.2275-2285

Petrovan, V., Rathakrishnan, A., Islam, M., Goatley, L.C., Moffat, K., Sanchez-Cordon, P.J., Reis, A.L. and Dixon, L.K. (2022). Role of African swine fever virus proteins EP153R and EP402R in reducing viral persistence in blood and virulence in pigs infected with BeninΔDP148R. Journal of virology. 96 (1): e01340-21. doi: 10.1128/JVI.01340-21

Puzankova, O., Gavrilova, V., Chernyshev, R., Kolbin, I., Igolkin, A., Sprygin, A., Chvala, I. and Mazloum, A. (2023). Novel protocol for the preparation of porcine bone marrow primary cell culture for African swine fever virus isolation. Methods and protocols. 6 (5): 73. doi: 10.3390/mps6050073

Qiu, Z., Li, Z., Yan, Q., Li, Y., Xiong, W., Wu, K., Li, X., Fan, S., Zhao, M., Ding, H., et al. (2021). Development of Diagnostic Tests Provides Technical Support for the Control of African Swine Fever Vaccines. 9 (4): 343. doi: 10.3390/vaccines9040343

Sánchez, E.G., Riera, E., Nogal, M., Gallardo, C., Fernández, P., Bello-Morales, R., López-Guerrero, J.A., Chitko-McKown, C.G., Richt, J.A. and Revilla, Y. (2017). Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production. Science reports. 7(1): 10369. doi: 10.1038/s41598-017-09948-x

Sanchez-Vizcano, J.M., Mur, L., Gomez-Villamandos, J.C. and Carrasco, J.L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of comparative pathology. 152 (1): 9-21. doi: 10.1016/j.jcpa.2014.09.003

Urbano, A.C. and Ferreira, F. (2022). African swine fever control and prevention: an update on vaccine development. Emerging microbes and infections. 11(1): 2021-2033.doi:10.1080/22221751.2022.2108342.

Wang, Y., Kang, W., Yang, W., Zhang, J., Li, D., and Zheng, H. (2021). Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review. Frontiers in immunology. 12: 715582. doi: 10.3389/fimmu.2021.715582

[WOAH] World Organization for Animal Health. (2021). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Chapter 3.8.1—African Swine Fever (Infection with African Swine Fever Virus); OIE: Paris, France https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf

Yoo, D., Kim, H., Lee, J.Y. and Yoo, H.S. (2020). African swine fever: Etiology, epidemiological status in Korea, and perspective on control. Journal of veterinary sciences. 21(2):e38. doi: 10.4142/jvs.2020.21.e38

Zhao, D., Liu. R, Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., et al. (2019). Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging microbes and infections. 8(1): 438-447. doi: 10.1080/22221751.2019.1590128

Zhu, Z., Mao, R., Liu, B., Liu, H., Shi, Z., Zhang, K., Liu, H., Zhang, D., Liu, J., Zhao, Z., et al. (2024). Single cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics. Proceedings of the National Academy of Sciences. 121(10): e2312150121. doi: 10.1073/pnas.2312150121



DOI: https://doi.org/10.22146/jsv.109976

Article Metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2026 Jurnal Sain Veteriner

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Sain Veteriner Indexed by

    CrossrefROADCOREProduct DetailsDESKRIPSI GAMBAR


Copyright of JSV (Jurnal Sain Veteriner) ISSN 0126-0421 (print), ISSN 2407-3733 (online).

Fakultas Kedokteran Hewan, Universitas Gadjah Mada

Jl. Fauna No.2, Karangmalang, Yogyakarta

Phone: 0274-560862

Fax: 0274-560861

Email: jsv_fkh@ugm.ac.id

HP. 0895363078367

Jurnal Sain Veteriner is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

free
web stats View My Stats