C-reactive protein (CRP) is a member of the family of proteins known as pentraxins, and originally defined as a substance, observed in the serum or plasma of patient with acute infections, that reacted with the C-polysaccharide of the pneumococcus. Serum concentrations of CRP increase as part of the inflammatory response to infection or acute injury. The aim of the study was to see the differences between acute and chronic stimuli in the increasing of CRP concentration in serum of Sprague Dawley rat. Twenty male Sprague Dawley rats, 1.5 months of age were used as experimental animals. Rats were adapted for 5 days and given basal diet, containing normal fat (5% of fat) and water ad libitum. Rats were then divided into 4 groups of 5 each. Group 1 was used as control animal. The animals in this group were fed basal diet for 59 days without any other treatments. Group 2 was animals fed high fat diet containing 20% of fat, for 59 days without any other treatments. Group 3 was animals fed basal diet for 59 days and in the day of 60 then injected with LPS from Escherichia coli.
O111:B4, 1.0 mg/kg BW intraperitoneally, and Group 4 was animals fed basal diet for 59 days and in the day of 60 animals then laparatomized. Twenty four hours after all treatments, blood sample were collected from orbitally vein, serum was separated and used to analyze CRP concentration. Statistical analyzes using one way analyzes of variance showed that there were significance differences among Group 1, 2, 3 and 4 (p<0.05). Mean of CRP concentrations respectively from the highest to the lowest were: Group 3, Group 4, Group 2 and Group 1. From the result of the study it can be concluded that CRP concentration of acute stimulus was higher than chronic stimulus.

Key words: C-reactive protein, lipopolysaccharides, high fat diet, laparatomy.

INTRODUCTION

Atherosclerosis is a disease of large and medium sized arteries characterized by thickening and hardening of vascular wall. It involves a substance called plaque in the inner lining of the arteries. American Heart Association (2002) has identified several risk factors for coronary heart disease (CHD), an outcome of atherosclerosis. Both the increasing number and the increasing severity of risk factors increase the risk of developing CHD. Most of the risk factors can be modified, treated or controlled. High blood pressure, elevated serum LDL cholesterol level and tobacco smoke are considered the major classical risk factors for the development of CHD. Additional factors predisposing to CHD include age, gender (male), hereditary, race, obesity, physical inactivity, diabetes and high serum triglyceride and low HDL cholesterol levels. Other factors contributing to stress and excessive alcohol consumption (Ross, 1999). Inflammatory processes have important roles in the etiology of coronary heart disease (CHD), but the mechanisms underlying this relationship are poorly understood (Berk et al., 1990).

C-reactive protein is a member of the family of proteins known as pentraxins, and originally defined as a substance, observed in the serum or plasma of patient with acute infections, that reacted with C-polysaccharide of the pneumococcos. C-reactive protein is known also as a protein that shares several functions with immunoglobulin (Ig) G including complement activation and binding to receptors on monocytes and neutrophils (Bharadwaj et al., 1999). C-reactive protein largely regulated by circulating levels of interleukin 6 (IL-6), predicts coronary heart disease incidence in healthy subjects (Yudkin et al., 1999). Serum concentrations of CRP increase from less than one to hundreds of micrograms per milliliter as part of the inflammatory response to infection or acute injury (Bharadwaj et al., 1999).

Several studies have shown that elevated plasma level of CRP is associated with the risk of CHD and the severity of atherosclerosis (Berk et al., 1990). It is not clear whether this protein merely is marker of inflammation or whether they actually can mediate atherosclerosis. The aim of this study was to see the difference effects among high fat diet, surgery and LPS on C-reactive protein level in Sprage Dawley rat.

MATERIALS AND METHODS

Twenty male Sprague Dawley rats, 1.5 months of age were used as experimental animals. Rats were adapted in 20 single cages for 5 days and given basal diet containing normal fat and water ad libitum. After adaptation, rats were divided into 4 groups (Group 1, 2, 3 and 4) of 5 each. Group 1 was used as control animals, they were fed containing normal fat(4.5% of fat) for 59 days, without any other treatments. Group 2 was animals thet fed containing high fat (20% of fat) for about 59 days without any other treatments. Group 3 was animals that fed containing normal fat for 59 days and injected with LPS of E. coli O111: B4, dose: 1 mg/kg BW intraperitoneally, and group 4 was animals that fed containing normal fat for 59 days and in the last day all animals in this group were laparatomized. Twenty four hours after treatments, blood sample were collected from
Dhirgo Adji, The Effect of High Lipid Diet, Lipopolysaccharide and Laparatomy Surgery on...

orbitally vein of all animals, serum were then separated and used for CRP level analyses. The diet was made in Pusat Antar Universitas (PAU) Pangan dan Gizi, Gadjah Mada University. Fat concentrations were made 4.5% for basal diet and 20% for high fat diet.

Lipopolysaccharide (LPS) from Escherichia coli O111:B4 was purchased from Sigma Laboratory St. Louis, MO. Using a tuberculin disposable spuit, LPS was injected intraperitoneally with a single dose of 1 mg/kg body weight.

Fat concentrations were made 4.5% for basal diet and 20% for high fat diet.

Lipopolysaccharide (LPS) from Escherichia coli O111:B4 was purchased from Sigma Laboratory St. Louis, MO. Using a tuberculin disposable spuit, LPS was injected intraperitoneally with a single dose of 1 mg/kg body weight.

Analysis of Variance (ANOVA) was used to analyse the effect of variables. Data was presented as mean ± SD. Significance level was shown for all comparisons and the interrelationships where p<0.05. The significance differences were then analyzed using Tukey HSD.

RESULTS AND DISCUSSION

The result of the study showed that CRP level was increased in several samples, especially samples from group 3 and group 4 (Figure 1).

From the results we see that in group 1, although the diet was containing normal fat (control) CRP still produced and found in the serum. According to Pepys and Hirchfield (2003), in healthy young human, the median concentration of CRP is 0.8 mg/L, so normally CRP is produced in the liver. Untill the recent day, normal data of CRP in rat has not known yet. In Group 1, we see that mean of CRP value was 0.6±0.22 µg/mL and assumed that this result was the normal value. After acute stimulus (LPS and Surgery), values of CRP was increase. In this research mean of CRP values from the highest to
the lowest respectively were: (1) Group 3 (LPS) =2.24±0.87 µg/mL, (2) Group 4 (Surgery) =1.92±0.71 µg/mL, (3) Group 2 (high fat diet)= 1.44±0.35 µg/mL and (4) Group 1 (control) = 0.6±0.22 µg/mL. From that results we see that CRP value after acute stimulus was higher than chronic stimulus. Statistical analysis of CRP level from Group 1,2,3 and 4 showed that there were significance differences between treatments (p<0.05). After analyzed using Tukey HSD method, the differences were between Group I and Group 3, and Group I and Group 4. Although statistical analyzes of Group 2 did not increase significantly, but mean of CRP value in this group still different from Group 1, this result showed that high lipid diet caused increase CRP value. From all of the results we assumed that the mechanisms how CRP increase was like the diagram below (Figure 2). The stimuli, both acute and chronic produces changes in gene expression within the vessel wall and alters function of blood vessels. These responses include the expression of the inducible isoform of nitric oxide (NO) synthase (iNOS) (Gunnet et al., 1999). Lipopolysaccharide (LPS) increases the expressions of xanthine oxidase and superoxide levels in blood (Bagger and Vallance, 1999). Increasing the levels of reactive oxygen species will activate pro-inflammatory cytokines like interleukine-1 (IL-1) and Tumor necrotic factor (TNFα). Interleukine-1 in the circulation then activate Interleukine-6 (IL-6)
and Interleukine-6 in circulation then increase synthesis some liver protein including CRP. According to Gabay and Kushner (1999), interleukine-6 is the chief stimulator of the production of most acute phase proteins including CRP. The acute phase response (CRP) comprises the nonspecific physiological and biochemical responses of the endothermic animals to most forms of tissue damage, infection and inflammation (Pepys and Baltz, 1983).

From all of the results it can be concluded that there were significant differences between Group 1 (control), Group 2 (LPS), Group 3 (Surgery) and Group 4 (high lipid diet) (p<0.05). Means of CRP level after treatments respectively from the highest to the lowest were: Group 3, Group 4, Group 2, and Group 1. Compare with chronic stimulus, acute stimulus would be higher elevate of CRP serum concentration.

ACKNOWLEDGEMENTS

The author gratefully acknowledge to Prof. Hastari Wuryastuti, M.Sc., Ph.D. For excellent advice, especially for high lipid diet formula used in this research.

REFERENCES

