KAJIAN KERAGAMAN GENETIK ISOLAT RALSTONIA SOLANACEARUM BIOVAR 3 MENGGUNAKAN PENANDA REP-PCR

STUDY ON GENETIC VARIATION OF RALSTONIA SOLANACEARUM ISOLATES BIOVAR 3 USING REP-PCR MARKER

Yadi Suryadi
RPI-Balitbio-Bogor

ABSTRACT

Study on DNA fingerprinting of genomic DNA of Australian Ralstonia solanacearum biovar 3 was characterized by a DNA BOX primer that correspond with repetitive sequence using PCR amplification (rep-PCR). Based on rep-PCR DNA profiles different band mobility were observed among Australian biovar 3. Most of isolates have shown common DNA amplification product at 600 bp. Cluster analysis to the DNA profiles showed two different DNA banding patterns that correlated with geographical origins of the isolates. Subgroup A correspond well with isolates from South Queensland/New South Wales, whilst subgroup B correspond with isolates from North Queensland origin.

Key words: Ralstonia solanacearum, rep-PCR, marker

INTISARI

Kajian terhadap sidik jari DNA genomik Ralstonia solanacearum asal biovar 3 Australia telah dilakukan dengan DNA penanda BOX yang berasosiasi dengan sekuen berulang (repetitive) menggunakan amplifikasi PCR (rep-PCR). Berdasarkan profil DNA rep-PCR, dapat dilihat adanya pita DNA yang berlainan di antara isolat biovar 3 Australia yang diuji. Kebanyakan isolat mempunyai ciri DNA berukuran 600 bp. Analisis pengelompokan terhadap profil DNA memperlihatkan adanya 2 tipe DNA yang berbeda, yang berhubungan dengan asal isolat. Subkelompok A berhubungan dengan isolat yang diperoleh dari daerah Queensland Selatan/New South Wales, sedangkan subkelompok B berhubungan dengan isolat dari daerah Queensland Utara.

Kata kunci: Ralstonia solanacearum, rep-PCR, penanda

PENGANTAR

Situ tentang karakterisasi isolat R. solanacearum telah dilakukan berdasarkan pendekatan asam nukleat seperti analisis Restriction Fragment Length Polymorphism (RFLP) (Cook et al., 1989; Seal et al., 1992). Analisis tersebut memerlukan DNA penanda (probe) yang berasal dari variasi sekuen genom bakteri yang homolog. Cook et al. (1989) menggunakan analisis RFLP dengan DNA pelacak yang berasal dari sekuen gen yang menyandarkan respon terhadap hypersensitifitas dan patogenisitas (hsp), sedangkan Seal et al. (1992) menggunakan sekuen gen 16S
rRNA. Kedua analisis tersebut dipergunakan untuk membedakan isolat *R. solanacearum* masih memerlukan waktu panjang (2-3 hari), di samping menghasilkan beberapa kelompok strain RFLP yang cukup kompleks.

Pada makalah ini dilaporkan penggunaan sekuen BOX sebagai penanda pada rep-PCR untuk mempelajari strain strain Australia biovar 3 dan mengelompokkannya ke dalam subkelompok strain *R. solanacearum*.

BAHAN DAN METODE

Tabel 1. Isolat *R. solanacearum* biovar 3 yang diuji rep-PCR dengan penanda BOX

<table>
<thead>
<tr>
<th>No isolat</th>
<th>Asal inang</th>
<th>Asal lokasi</th>
<th>Biovar</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>tanaman hias</td>
<td>Mauritius</td>
<td>3</td>
</tr>
<tr>
<td>BR1, BR4</td>
<td>terung</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>Broc 1</td>
<td>brokoli</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>GN 1, GN 3</td>
<td>kacang tanah</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>R 846</td>
<td>jahe</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>R 849</td>
<td>Portulaca oleracea</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>110, Ps 3348</td>
<td>kentang</td>
<td>Mauritius</td>
<td>3</td>
</tr>
<tr>
<td>TPF</td>
<td>tomat</td>
<td>Mauritius</td>
<td>3</td>
</tr>
<tr>
<td>MG 4</td>
<td>Marigold</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>R 205</td>
<td>babadotan</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>R 206</td>
<td>Ipomoea</td>
<td>Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>R 222</td>
<td>cengkeh</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>R 290</td>
<td>zaikun</td>
<td>China</td>
<td>3</td>
</tr>
<tr>
<td>R 314</td>
<td>kentang</td>
<td>China</td>
<td>3</td>
</tr>
<tr>
<td>R 321</td>
<td>murbei</td>
<td>Kamerun</td>
<td>3</td>
</tr>
<tr>
<td>R 781</td>
<td>kentang</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>R 791</td>
<td>tomat</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>R 809</td>
<td>jahe merah</td>
<td>Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>JEOI</td>
<td>kentang</td>
<td>Inggris</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1066</td>
<td>Heliconia</td>
<td>Qld, Australia</td>
<td>3</td>
</tr>
<tr>
<td>ACH 506</td>
<td>kentang</td>
<td>Qld, Australia</td>
<td>3</td>
</tr>
<tr>
<td>ACH 001, ACH 574</td>
<td>tomat</td>
<td>Brisbane, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 002</td>
<td>tomat</td>
<td>Buderim, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 006</td>
<td>Xanthium pungens</td>
<td>Perwillowen, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH0171</td>
<td>tembakau</td>
<td>Nambour, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH170A</td>
<td>turnip weed</td>
<td>Ingham, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 12B</td>
<td>kentang</td>
<td>East bannon, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 131A</td>
<td>Xanthium pungens</td>
<td>Nambour, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 190</td>
<td>tomat liar</td>
<td>Perwillowen, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 333</td>
<td>paprika</td>
<td>Redland bay, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 234</td>
<td>Pultenea vilosa</td>
<td>Nambour, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 369A</td>
<td>tomat</td>
<td>Banora Pt, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1017</td>
<td>Solarium nigrum</td>
<td>Maroota, NSW</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1023, ACH 1024</td>
<td>Strelitzia reginae</td>
<td>Somersby, NSW</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1082</td>
<td>kentang</td>
<td>Brisbane, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1063</td>
<td>palma Alexandra</td>
<td>Clifton beach, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1064, ACH 1065</td>
<td>Heliconia</td>
<td>Cairns, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1069</td>
<td>Heliconia</td>
<td>Redlynch, Qld</td>
<td>3</td>
</tr>
<tr>
<td>ACH 1067</td>
<td>Heliconia</td>
<td>Babinda, Qld</td>
<td>3</td>
</tr>
</tbody>
</table>

Keterangan: Qld=Queensland; NSW= New South Wales

Kondisi rep-PCR dan agarose elektroforesis. DNA sekuen BOX AIR (5’CTACGGCAAGGCACCGTCAGTACG 3’) disintesis di Pusat Biologi Molekuler dan Bioteknologi University of Queensland. Amplifikasi DNA dilakukan menggunakan mesin PCR thermal cycler (PTC 100, MJ Res. Inc.) menggunakan reaksi total volume 25 µl dengan komposisi sebagai berikut: 10 x bufer PCR, 1,25 mM dNTP, 40 pmole DNA BOX, 25 mM MgCl2, 0,5 U/µl Taq polymerase dan 10 ng DNA. Ke dalam tabung PCR ditambahkan minyak mineral (Sigma). Amplifikasi rep-PCR lainnya dilakukan dengan menggunakan sel bakteri utuh (whole cells) sebagai DNA template.
Program suhu amplifikasi rep-PCR dilakukan sesuai protokol de Bruijn (1992) yaitu: suhu denaturasi awal 94°C selama 7 menit, diikuti 30 daur putaran denaturasi 94°C selama 1 menit, annealing 52°C selama 1 menit, ekstensi 65°C selama 7 menit dan suhu ekstensi akhir 65°C selama 16 menit. DNA produk PCR yang mencirikan profil rep-PCR dipisahkan menggunakan agarose gel 2% dengan cara elektroforesis horizontal selama 30 menit pada tegangan arus 120 V. Gel dicuci dengan larutan ethidium bromida (0,5 μg/ml) dan dicuci kembali dengan air steril selama 20 menit sebelum dilihat di bawah sinar UV menggunakan alat Transiluminator. Fotografi dilakukan menggunakan kamera Polaroid. Profil DNA diamati berdasarkan data biner (ada/tidaknya fragment DNA pada gel) dan data dianalisis ke dalam sistem pengelompokan menggunakan program NTSYS (Fegan, tidak dipublikasikan).

HASIL DAN PEMBAHASAN

Isolat R. solanacearum yang dianalisis dengan penanda BOX primer menggunakan amplifikasi rep-PCR menghasilkan pola fragment DNA yang unik mencirikan polimorfisme DNA antarisolat R. solanacearum biovar 3. Reaksi rep-PCR diulang beberapa kali untuk melihat reproduibilitasnya kemudian data yang diperoleh dianalisis berdasarkan ada/tidaknya fragment DNA pada masing-masing strain R. solanacearum yang diuji.

Pada umumnya sidik jari genom R. solanacearum biovar 3 menghasilkan fragment DNA yang kuat pada ukuran sekitar 600 bp. Hal ini mungkin merupakan fragment unum yang spesifik untuk biovar 3. Pola rep-PCR menghasilkan total fragment DNA berkisar antara 7-8 fragment DNA (Gambar 1).

Berdasarkan profil rep-PCR, pada isolat Australia biovar 3 dapat dilihat sedikitnya terdapat dua subkelompok (subgroup) strain R. solanacearum yaitu subkelompok A mewakili isolat-isolat yang diperoleh dari South Queensland/New South Wales (ACH 001, 017, 002, 006, 0170, 012, 131, 190, 333, 671, 234, 574, 369, 1017, 1023, 1024, 1082) dan subkelompok B mewakili isolat-isolat yang berasal dari North Queensland (ACH 1063, 1064,1069,1071,1065,1067) (Gambar 2). Kajian pendahuluan terhadap isolat yang termasuk ke dalam biovar 3 lainnya asal Asia (Malaysia, Filipina dan Taiwan) menunjukkan profil rep-PCR yang mirip satu dengan lainnya, yaitu masing-masing mempunyai fragment berukuran 600 bp, walaupun polimorfisme DNA sedikit berbeda pada isolat-isolat yang berasal dari Indonesia (Suryadi, tidak dipublikasikan).

Keterangan: No kolom 1=21=30= DNA marker , 2=R 205, 3=R 206, 4=110, 5=125, 6=Br 1, 7=Br 4, 8=Br6 1, 9=GN 1, 10=GN 3, 11=TPF, 12, MG 4, 13= JEO 1, 14= ACH 0171, 15= ACH 781, 16= R 809, 17= R 849, 18= R 314, 19= R 290, 20= R 321, 22= R 809, 23= R 222, 24= R 791, 25= R 846, 26= Ps 3348, 27= ACH 1066, 28= ACH 0506, 29= ACH 0171.
INDEX OF SIMILARITY

Gambar 2. Analisis dendrogram terhadap pola rep-PCR isolat Australia biovar 3 menggunakan penanda BOX A1R.

Hasil penelitian menunjukkan bahwa isolat Australia biovar 3 yang dialisisi dengan rep-PCR menghasilkan 2 subkelompok strain dan hal ini mendukung hasil penelitian lainnya menggunakan penanda RAPD, yang membuktikan bahwa isolat *R. solanacearum* Australia biovar 3 dapat pula dibedakan berdasarkan geografinya dan tidak berkorelasi dengan asal tanaman inangnya (Maghirang, *tidak dipublikasikan*). Isolat ACH 0171 asal terung mempunyai profil rep-PCR berbeda dengan isolat ACH 1017 yang juga diisolasi dari terung. Hal ini berarti bahwa terdapat keragaman genetik yang berbeda di antara strain yang berasal dari inang yang sama. Pada penelitian terdahulu Suryadi et al., (*tidak dipublikasikan*) yang menggunakan hibridisasi DNA Southern melaporkan bahwa isolat yang berasal dari kacang tanah kadang-kadang mempunyai profil DNA yang sama dengan isolat asal cabai, sehingga usaha karakterisasi DNA untuk membedakan strain masih memiliki

Dari hasil penelitian ini dapat ditunjukkan bahwa profil rep-PCR lebih efektif, dan hasil amplifikasi juga dapat diperoleh langsung dari DNA template yang berasal dari sel utuh bakteri. Hal ini merupakan keuntungan karena dapat mengurangi tahapan pemurnian DNA, sehingga diharapkan teknik tersebut dapat dilakukan secara rutin untuk mengkarakterisasi lebih lanjut pola sidik jari DNA R. solanacearum.

KESIMPULAN

Hasil penelitian karakterisasi isolat R. solanacearum Australia biovar 3 menggunakan rep-PCR menghasilkan sejumlah fragmen DNA yang spesifik, dan mempunyai ciri fragmen yang kuat pada ukuran 600 bp. Pola rep-PCR yang diperoleh menghasilkan 2 tipe subkelompok strain biovar 3 (subkelompok A dan B) yang berkorelasi dengan daerah asal isolat.

UCAPAN TERIMA KASIH

Penelitian ini dibayai oleh proyek ACIAR PN 9452. Penulis mengucapkan terima kasih kepada Dr. M. Pegan yang telah membimbing dalam penelitian serta Dr. M. Machmud atas koreksi pada penulisan makalah ini.

DAFTAR PUSTAKA

