DETEKSI STRAI. Pseudomonas solanacearum PENGHASIL BAKTERIOSIN

(DETECTION OF BACTERIOCIN-PRODUCING STRAINS OF Pseudomonas solanacearum)

Triwidodo Arwiyanto dan Sudarmadi
Fakultas Pertanian Universitas Gadjah Mada
I. Hartana
Asosiasi Penelitian Perkebunan Indonesia, Bogor

[NTISARI

Strain-strain P. solanacearum penghasil bakteriosin dideteksi pada medium Casamino-acid Pepton Glukosa Agar (CPG). Semua strain P. solanacearum yang diuji menghasilkan bakteriosin dengan spektrum yang berbeda-beda. Strain nomor 6, 36 dan 49 mampu menghambat sebagian besar strain yang lain. Bentuk avirulen dari ketiga strain tersebut, yaitu $6-\mathrm{op}, 36-\mathrm{op}$ dan $49-\mathrm{op}$, masih mampu menghasilkan bakteriosin pada medium CPG. Produksi bakteriosin tidak dipengaruhi oleh kadar sumber karbon maupun pH medium. Suhu inaktifasi bakteriosin yang dihasilkan oleh strain $6-\frac{o p}{}$, $36-\mathrm{op}$ dan $49-\mathrm{op}$ adalah $70^{\circ} \mathrm{C}$ selama 30 menit.

Kata kunci: Pseudomonas solanacearum, bakteriosin, avirulen

Abstract

The capability of Pseudomonas solanacearum to produce bacteriocin was investigated with the use of Casamino-acid Peptone Glucose Agar. All strains tested produce bacteriocin with various spectra. Strain 6, 36 and 49 inhibited almost all of the other strains. The avirulent type of those three strains, i.e. 6-op. 36-op and 49-op, still produced bacteriocin on the same medium. The concentration of carbon source and acidity of the medium did not have any effect on the bacteriocin production. The bacteriocin produced by strains $6-o p, 36-o p$ and $49-o p$ were inactivated at $70^{\circ} \mathrm{C}$ for 30 minutes.

Key-words: Pseudomonas solanacearum, bacteriocin, avirulent

PENGANTAR

Bakteriosin adalah suatu senyawa yang sebagian besar tersusun oleh protein, dihasilkan oleh suatu strain bakteri yang hanya mampu menghambat pertumbuhan strain bakteri lain yang termasuk dalam jenis (species) yang sama (Reeves, 1972). Strain penghasil bakteriosin disebut sebagai strain bakteriosinogenik (Reeves, 1965, 1972). Karena kekhususannya dalam penghambatan ini, bakteriosin dan strain bakteriosinogenik telah banyak diteliti oleh para ahli dengan tujuan untuk mengendalikan penyakit tumbuhan (Arwiyanto et al., 1993; Campbell and Echandi, 1979; Cuppels, 1976; Cuppels et al., 1978; Echandi, 1976; Echandi and Moyer, 1979;

Endo et al., 1975;) dan bakteri pembusuk makanan (Cintas et al., 1995; Kato et al., 1993). Keuntungan yang diperoleh dengan menggunakan strain bakteriosinogenik dalam pengendalianan hayati ialah adanya kesamaan 'niche', nutrisi, dan tempat infeksi dengan patogen karena mikroorganisme tersebut satu jenis dengan patogen, hanya berbeda strainnya. Karena jenisnya sama dengan patogen, mikroorganisme tersebut harus dimutasikan ke bentuk avirulen terlebih dahulu sebelum digunakan dalam pengendalian hayati.

Tulisan ini melaporkan bahwa strain-strain P. solanaceartum yang diisolasi dari Sumatera Utara mampu menghasilkan bakteriosin pada medium CPG. Tiga strain di antaranya mampu
menghambat pertumbuhan sebagian besar strain lain. Bentuk avirulen dari ketiga strain tersebut diharapkan dapat digunakan sebagai salah satu calon agensia pengendalian hayati penyakit layu bakteri tembakau.

BAHAN DAN METODE

Isolat bakteri dan kondisi biakan

P. solanacearum yang digunakan merupakan koleksi dari Laboratorium Bakteriologi Tumbuhan Fakultas Pertanian UGM. Bakteri tersebut diisolasi dari lahan pertanaman tembakau PTPN-II (Ex PTP II-IX) Medan, Sumatera Utara. Sebelum digunakan bakteri ditumbuhkan pada medium CPG selama 48 jam pada suhu kamar. Koloni tunggal yang tumbuh dipindah pada medium CPG miring. Setelah 24 jam pada suhu kamar, bakteri yang tumbuh digunakan dalam percobaan.

Deteksi Strain Bakteriosinogenik

Metode deteksi strain bakteriosinogenik seperti yang diuraikan oleh Arwiyanto et al. (1993) sebagai berikut. Semua strain diuji sebagai strain bakteriosinogenik terhadap strain sejenis sebagai indikator. Cawan Petri berisi 20 ml medium CPG diinokulasi secara titik dengan enam strain P. solanacearum. Biakan diinkubasikan selama 48 jam pada suhu kamar, kemudian cawan Petri dibalik dan pada tutupnya dituangkan 1 ml kloroform. Setelah dua jam cawan Petri dibalik kembali pada posisi semula. Sebanyak $0,2 \mathrm{ml}$ suspensi P. solanacearum ($10^{8} \mathrm{cfu} / \mathrm{ml}$) dituangkan pada medium $0,6 \%$ agar-air yang mencair $\left(45^{\circ} \mathrm{C}\right)$, digojog hingga homogen kemudian dituangkan ke dalam cawan Petri tersebut di atas. Biakan diinkubasikan lagi selama 24 jam pada suhu kamar. Zone hambatan yang terbentuk diamati kekeruhannya dan diukur diameternya.

Untuk membuktikan bahwa zone hambatan terbentuk karena adanya bakteriosin, agar (medium) pada zone tersebut diambil secara aseptis kemudian dimasukkan ke dalam tabung reaksi berisi medium CPG cair dan agar dihancurkan dengan skalpel. Tabung tersebut ditaruh pada suhu kamar dan kekeruhan media diamati sampai lima hari.

Isolasi strain avirulen

Dari strain bakteriosinogenik yang diperoleh pada metode di atas dipilih beberapa strain yang mampu menghambat sebagian besar strain yang lain. Strain-strain tersebut ditumbuhkan pada medium CPG cair dan diinkubasikan pada suhu kamar. Setiap lima hari sekali dari masing-masing biakan diambil 1 ose kemudian digoreskan pada medium CPG. Setelah inkubasi selama 48 jam pada suhu kamar diamati adanya koloni yang berukuran kecil (diameter kurang dari 1 mm), berbentuk bulat, dan tembus cahaya (Goto, komunikasi pribadi). Koloni ini adalah P. solanacearum yang bersifat avirulen karena sudah kehilangan polisakarida ekstraseluler. Koloni yang diperoleh dikonfirmasi sifat avirulennya dengan reaksi hipersensitif pada tembakau var. White Burley (Klement et al., 1988) dan dengan inokulasi pada tanaman inangnya (tembakau, var Deli-4). Setelah diperoleh koloni yang benar-benar avirulen, kemampuannya menghasilkan bakteriosin diuji kembali dengan metode tersebut di atas.

Pengaruh Suhu terhadap Produksi Bakteriosin

Strain bakteriosinogenik ditumbuhkan pada medium CPG selama 48 jam pada suhu kamar. Biakan kemudian dimasukkan ke dalam oven pengering dengan perlakuan $65^{\circ} \mathrm{C}$ selama 30 menit, $70^{\circ} \mathrm{C}$ selama 20 menit, $70^{\circ} \mathrm{C}$ selama 30 menit, dan $80^{\circ} \mathrm{C}$ selama 10 menit. Setelah dingin kembali pada permukaan biakan dituangi dengan $0,2 \mathrm{ml}$ suspensi strain indikator dalam $0,6 \%$ agar air yang mencair $\left(45^{\circ} \mathrm{C}\right)$. Zone hambatan diamati 24 jam kemudian.

Pengaruh pH terhadap Produksi Bakteriosin

Strain bakteriosinogenik ditumbuhkan secara terpisah pada medium CPG dengan pH yang berbeda- beda yaitu 5,$5 ; 6 ; 7$; dan 8 . Prosedur selanjutnya sama seperti Deteksi Strain Bakteriosinogenik di atas.

Pengaruh Konsentrasi Sumber Karbon
terhadap Produksi Bakteriosin
Strain bakteriosinogenik ditumbuhkan secara terpisah pada medium CPG dengan kadar sumber
karbon yang berbeda beda yaitu $0,05 \%, 0,1 \%$, $0,2 \%, 0,25 \%, 0,5 \%, 1 \%$, dan 2%. Prosedur selanjutnya sama seperti Deteksi Strain Bakteriosinogenik di atas.

HASIL DAN PEMBAHASAN

Deteksi Strain Bakteriosinogenik

Semua strain P. solanacearum yang diuji mampu menghasilkan bakteriosin pada medium CPG. Hasil penelitian ini mendukung penelitian terdahulu bahwa mayoritas bakteri dalam genus Pseudomonas merupakan penghasil bakteriosin (Bradley, 1967; Reeves, 1965,1972; Vidaver et al.,1972), demikian pula bahwa P. solanacearum dari berbagai geografi merupakan penghasil bakteriosin yang potensial (Arwiyanto et al., 1993; Cuppels, 1976; Cuppels et al., 1978; He et al, 1988). Spektrum tiap-tiap strain bakteriosinogenik berbeda-beda, dari yang hanya mampu menghambat satu strain (strain nomor 42) sampai yang mampu menghambat 44 strain lainnya (strain nomor 49). Diameter penghambatan bervariasi dari kurang dari 1 mm sampai dengan 5 mm . Tidak dijumpai adanya strain yang peka terhadap bakteriosin yang diproduksinya. Hal ini wajar karena produksi bakteriosin dan kekebalan terhadap bakteriosin tersebut pada umumnya dikode oleh elemen genetik ekstrakromosomal (plasmid) yang sama, seperti halnya pada Agrobacterium radiobacter (Kerr, 1980). Dengan demikian strain bakteriosinogenik tidak akan peka terhadap bakteriosinnya sendiri. Data ini juga membuktikan bahwa antibiosis yang terjadi disebabkan oleh bakteriosin dan bukan oleh metabolit yang lain. Sudah banyak didokumentasikan bahwa bakteri pada medium juga menghasilkan senyawa penghambat pertumbuhan seperti asam laktat, hidrogen peroksida, antibiotik, amoniak (Konisky, 1978). dan juga bakteriofag (Okabe and Goto, 1965).

Strain nomor 6, 36 dan 49 merupakan strain bakteriosinogenik dengan spektrum penghambatan yang lebar; di samping itu ketiga strain ini mempunyai kekebalan terhadap sebagian besar strain bakteriosinogenik yang lain (Tabel 1). Sifat
seperti ini sangat menguntungkan karena dapat digunakan sebagai calon agensia pengendalian hayati layu bakteri tembakau. Masalah yang muncul ialah bahwa ketiga strain tersebut juga merupakan patogen layu bakteri. Dengan demikian sebelum digunakan sebagai agensia pengendalian hayati harus dihilangkan terlebih dahulu virulensinya seperti yang diuraikan pada bagian berikut ini.

Tabel 1. Penghambatan pertumbuhan P. solanacearum oleh tiga strain bakteriosinogenik

Strain Bakterio- sinogenik	Diameter hambatan (mm)	Jumlah strain yang dihambat	Jumlah strain yang menghambat
6	<1	11	12
	$1-2,5$	31	5
36	$3-5$	2	0
	<1	8	11
	$1-2,5$	29	2
49	$3-5$	5	0
	<1	11	12
	$1-2,5$	29	3
	$3-5$	4	0

Isolasi strain avirulen

Dari ketiga strain bakteriosinogenik di atas berhasil diperoleh mutan avirulen yang ternyata masih mampu menghasilkan bakteriosin pada medium CPG (Gambar 1). Ketiga strain tersebut masing-masing diberi notasi $6-\mathrm{op}, 36-\mathrm{op}$ dan 49op. Op adalah 'opalescent' yang berarti tembus cahaya apabila koloni bakteri pada medium agar diamati dengan sinar langsung. Strain-strain avirulen tersebut menimbulkan gejala hipersensitif pada daun tembakau yang mirip dengan gejala yang ditimbulkan oleh ras $2 P$. solanacearum. yaitu gejala nekrotik yang terbatas pada bekas suntikan. Tembakau var. Deli-4 yang diinokulasi dengan ketiga strain tersebut tidak menunjukkan gejala layu sampai satu bulan sctelah inokulasi, sedangkan tanaman yang diinokulasi dengan tipe virulennya menjadi layu setelah 10 hari. Data ini menunjukkan bahwa strain 6-op, 36-op, dan 49-op merupakan strain avirulen.

Gambar 1. Penghambatan pertumbuhan P. solanacearum oleh bakteriosin pada medium CPG agar. $\mathrm{F}=$ strain virulen; $\mathrm{OP}=$ strain avirulen

Strain avirulen adalah suatu varian patogen virulen yang tidak mampu menimbulkan penyakit (Holliday, 1988; Rifai et al., 1993). Untuk mendapatkan strain avirulen ini ada beberapa metode mutasi genetik yang dapat digunakan. Mutasi genetik dengan elemen transposon, misalnya, merupakan cara terbaik sebab mutan yang diperoleh biasanya stabil, tetapi dengan metode ini menyebabkan bakteri memiliki ketahanan terhadap bahan kimia tertentu. Sebagai contoh, mutasi genetik dengan transposon Tn5 menyebabkan bakteri menjadi kebal terhadap Kanamycin (Chaterjee et al., 1993). Ketahanan perolehan terhadap antibiotika ini (aquired antibiotic-resistance) tidak diinginkan dalam pengendalianan hayati. Metode yang paling sederhana dan relatif aman adalah dengan mutasi spontan dengan menumbuhkan bakteri pada medium yang sesuai dalam jangka waktu yang lama, seperti yang digunakan dalam penelitian ini. Kemungkinan kembali ke sifat virulen sangat kecil karena mutan biasanya bersifat pleiotrofik (Sequeira, 1992).

Pengaruh berbagai faktor terhadap produksi

 bakteriosinKarena terutama tersusun oleh protein, bakteriosin peka terhadap temperatur yang tinggi. Hasil penelitian menunjukkan bahwa bakteriosin menjadi non-aktif setelah dipanaskan pada suhu $70^{\circ} \mathrm{C}$ selama 30 menit (Tabel 2).

Tabel 2. Rata-rata diameter penghambatan pertumbuhan P. solanacearum oleh strain bakteriosinogenik pada berbagai temperatur

Strain Bakteriosinogenik	Perlakuan		
	$65^{\circ} \mathrm{C}$	30^{\prime}	$70^{\circ} \mathrm{C} 20^{\prime}$
		$70^{\circ} \mathrm{C} 30^{\prime}$	
6-op	2,3	2	0
$36-\mathrm{op}$	2,7	2	0
$49-\mathrm{op}$	2,2	2	0

Keasaman medium dan kadar sumber karbon tidak banyak berpengaruh terhadap produksi bakteriosin. Strain bakteriosinogenik mampu
menghasilkan bakteriosin dari $\mathrm{pH} 5,5$ sampai pH 8 (Tabel 3). Hal ini sesuai dengan sifat dari P. solanacearum yang memang mampu tumbuh pada kisaran pH yang luas, yaitu dari 5,5 sampai 10 (Arwiyanto et al., 1995). Kadar glukosa yang digunakan sebagai sumber karbon pada penelitian ini ternyata tidak mempengaruhi produksi bakteriosin. Mengingat bahwa komponen utama dari bakteriosin adalah protein (Reeves, 1972) maka kadar sumber karbon tidak akan banyak mempengaruhi diameter zone hambatan. .Perkecualian yang muncul dalam penelitian ini adalah bahwa strain nomor $36-$ op mampu membentuk zona hambatan paling besar pada kadar sumber karbon yang tertinggi (Tabel 4). Meskipun demikian, karena untuk menghasilkan produk tertentu bakteri harus terpenuhi nutrisinya, penelitian ini menunjukkan bahwa P. solanacearum strain $6-\mathrm{op}, 36-\mathrm{op}$, dan $49-\mathrm{op}$ masih mampu menghasilkan bakteriosin pada kondisi sumber karbon yang minim. Pada umumnya kandungan sumber karbon medium untuk bakteri berkisar dari $0,25 \%$ sampai 2\% (Schaad, 1988). Sifat ini akan menguntungkan apabila strain-strain tersebut dikembalikan ke habitatnya dan harus berkompetisi dengan mikroorganisme lain, dalam lingkungan dengan sumber karbon yang sangat terbatas dan diperebutkan oleh banyak mikroorganisme (Bolton et al., 1993).

Tabel 3. Rata-rata diameter penghambatan pertumbuhan P. solanacearum (mm) oleh strain bakteriosinogenik pada berbagai pH media

Strain Bakteriosinogenik	pH media			
	5,5	6	7	8
6-op	3,6	4	4	2,9
36-op	5,5	6	5,4	3,9
49-op	2,4	2,6	2,8	3

Tabel 4. Rata-rata diameter penghambatan pertumbuhan P. solanacearum oleh strain bakteriosinogenik pada berbagai kadar glukosa

Starin Bakterio- sinogenik	$0,05 \%$	$0,1 \%$	$0,2 \%$	$0,25 \%$	$0,5 \%$	1%
6-op	3,3	4,2	3,7	4,0	4,2	4,0
36-op	4,0	5,1	4,5	4,8	5,2	6,3
49-op	3,0	3,0	3,1	3,0	3,0	3,0

KESIMPULAN

1. P. solanacearum isolat Medan mampu menghasilkan bakteriosin pada medium CPG dengan spektrum penghambatan yang berbedabeda.
2. Strain 6, 36, dan 49 mampu menghambat pertumbuhan sebagian besar strain P. solanacearum yang lain dan bentuk avirulen dari ketiga strain tersebut, yaitu strain $6-\mathrm{op}, 36-\mathrm{op}$, dan 49-op, mampu menghasilkan bakteriosin pada spektrum pH yang luas dan pada kadar sumber karbon yang rendah.

Penulis mengucapkan banyak terima kasih kepada PTP II-IX (sekarang PTPN-II) yang berkedudukan di Medan yang membiayai penelitian ini.

DAFTAR PUSTAKA

Arwiyanto, T.; M. Goto and Y. Takikawa. 1993. Characterization of Bacteriocins Produced by Pseudomonas solanacearum. Ann. Phytopath. Soc. Japan. 59: 114-122

Arwiyanto, T.; Sudarmadi dan I. Hartana. 1995.
Karakteristik Patogen Penyebab Penyakit Layu Bakteri pada Tembakau Deli. Kongres Nasional XIII dan Seminar Ilmiah Perhimpunan Fïtopatologi Indonesia, Mataram.

Bolton Jr., H.: Fredrickson, J.K. and L.F. Elliot. 1993. Microbial Ecology of Rhizosphere. p. 27-63 In: F.B. Metting, Jr. (ed.), Soil Microhial Cicologgy. An Applications in Agricultural and E:nvironmental Managemen, New York: Marcel Dekker, Inc.

Bradley, D.E. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol.Rev. 31: 230-314

Campbell, R. and Echandi, E. 1979. Bacteriocin production in Erwinia carotovora. Phytopathology 69: 1-A3 (Abstr.)

Chaterjee, A.K.; Willis, J.W.; Gutterson, N.; Mills, D.; Niepold, F.; Warren, G.; Comai, L. and Clement, Z. 1993. Bacterial Genetics. P. 495-532 In: Klement, Z.; Rudolph, K. And D.C. Sands (eds.), Methods in Phytobacteriology, Budapest : Akademiai Kiado.

Cintas, L.M.; Rodriguez, J.M.; Fernandes, M.F.; Sletten, K.; Nes, I.F.; Hernandez P.E. and H. Holo. 1995. Isolation and Characterization of Pediocin L50, a New Bacteriocin from Pediococcus acidilactica with a Broad Inhibitory Spectrum. Appl. Env. Microbiol. 61: 2643-2648

Cuppels, D.A. 1976. Bacteriocin production by Pseudomonas solanacearum. P. 120. In: Sequeira, L. and A. Kelman (eds.), Proceedings of the First International Planning Conference and Workshop on the Ecology and Control of Bacterial Wilt Caused by Pseudomonas solanacearum. Raleigh, North Carolina.

Cuppels, D.A.; Hanson, R.S. and Kelman, A. 1978. Isolation and characterization of bacteriocin produced by Pseudomonas solanacearum. J. Gen. Microbiol. 109:295-303

Echandi, E. 1976. Bacteriocin production by Corynebacterium michiganense. Phytopathology 66:430-432

Echandi, E. and Moyer, J.W. 1979. Production, properties and morphology of bacteriocins from Erwinia chrysanthemi. Phytopathology 69: 12041207

Endo, Y.; Tsuyama, H. and Nakatani, F. 1975. Studies on Production of Antibacterial Agent by lirwinia carolovora and its Propertics. Ann.Phytopath.Soc. Japan 41: 40-48

He, L. Y., Fan, Y.L., Xie, D.X. and Fang, F. 1988. Intraspecific antagonism and bacteriocin production of Pseudomonas solanacearum. In Fifih Int.Cong.Plant Pathol. Abstract of Papers PII 1-24, Kyoto, Japan.

Holliday, P. 1992. A Dictionary of Plant Pathology. New York: Cambridge University Press. 369 pp.

Kato, T.; Matsuda, T.; Yoneyama, Y.; Kato, H. and nakamura, R. 1993. Isolation pf Enterococcus faecium with Antibacterial Activity and Characterization of Its bacteriocin. Biosci.Biotech.Biochem. 57:551-556

Kerr, A. 1980. Biological Control of Crown Gall Through Production of Agrocin 84. Plant Disease 64: 25-30

Konisky, J. 1978. The Bacteriocins. P. 71-136 ln: Ornston, L.N. and J.R. Sokatch (eds.), The Bacteria: A Treatise on Structure and Function. Vol VI. Bacterial Diversity, New York: Academic Press.

Okabe, N. and Goto, M. 1963. Bacteriophages of plant pathogens. Ann. Rev.Phytopathol. 1:397-418

Rifai, M.A.; Wijaya, E.A. dan Ermitati. 1993. Kamus Biologi, Fitopatologi. Jakarta: Departemen Pendidikan dan Kebudayaan. 111 hal.

Schaad, N.W. 1988. Laboratory Guide for Identification of Plant Pathogenic bacteria. 2nd Ed. St. Paul, Minnesota : APS Press. 164 pp.

Sequeira, L. 1992. Bacterial Wilt. London: CAB. 245 pp .

Vidaver, A.K.: Mathys, M.L.; Thomas, M.E. and Schuster, M.L. 1972. Bacteriocins of the phytopathogens Pseudomonas syringae, P. glycinea and P. phaseolicola. Can.J.Microbiol. 18:705-713

