Interpretasi Electrical Resistivity Tomography (ERT) untuk Pendugaan Air Tanah Dangkal pada Formasi Gunungapi Muda

https://doi.org/10.22146/jntt.56617

Erik Febriarta(1*), Suswanti Suswanti(2), Sembodo Noviandaru(3)

(1) Fakultas Teknologi Sumberdaya Alam, Institut Teknologi Yogyakarta
(2) Magister Management Bencana, Universitas Pembangunan Nasional "Veteran" Yogyakarta
(3) Fakultas Geografi, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Aquifers or groundwater saturated areas in the slope morphology of Merapi volcano are relatively thin due to massive rock outcrops above the surface. Because these massive igneous rocks dominate the local geological appearance, the groundwater potential on the upper foot slope is relatively lower than the lower one that has thicker aquifer materials (sand). This study was designed to investigate the thickness of potential groundwater and identify the aquifer materials by geoelectrical methods using the Electrical Resistivity Tomography (ERT) configuration. ERT has several advantages, including its ability to present multi-log lithology vertically and produce a more detailed surface appearance. In this study, rock resistivity values were measured with a survey line stretching across 250 m. The geoelectrical imaging produced actual values (potential values) of the rock resistivities through the matching curve and inversion techniques. Afterward, the actual resistivities were matched with the standard electrical resistivity of rocks and their respective hydrogeological characteristics, i.e., the capacity to store and transmit water. Interpretation on rock resistivities detected groundwater at a depth of 0.5-12 m in Manisrenggo. This shallow aquifer has an impermeable layer composed of igneous rocks, which are massive breccia, that lie in one layer of sand. According to the Groundwater Basin Map, these rock formations are part of the Karanganyar-Boyolali Groundwater Basin. The shallow aquifers and hydraulic gradient lead to the emergence of seeps or flushes on the soil surface.

Keywords


Groundwater; Aquifer; Geoelectrical; Electrical Resistivity Tomography (ERT)

Full Text:

PDF


References

Badan Standarisasi Nasional. (2005). SNI 13-7121-2005 Penyelidikan potensi air tanah skala 1 : 100.000 atau lebih besar.

Badan Standarisasi Nasional. (2012). SNI 2818:2012 Tata cara pengukuran geolistrik Schlumberger untuk eksplorasi air tanah.

Bernard, J., Leite, O., & Vermeersch, F. (2011). Multi-Electrode Resistivity Imaging for Environmental and Mining Application. Orleans: IRIS.

Bouwer, & Herman. (1978). Groundwater Hydrology. New York: McGraw-Hill.

Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Ward, W., Jackson, C., Matthews, B., … Gunn, D. (2015). Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412–420. https://doi.org/10.1016/j.enggeo.2015.05.015.

Donald, S. M. M., Binnie, & Ltd, P. H. T. S. (1984). Greater Yogyakarta Groundwater Resources Study. Indonesia: Directorate General of Water Resources Groundwater Development Project (P2AT).

Fetter, C. W. (2004). Applied Hydrogeology (5th ed.). Ogio: Merril Publishing Company.

Kurniawan, A. (2011). Identifikasi Struktur Bedding Bentuk lahan Berdasarkan Metode ERT Konfigurasi Doubel Dipole Di Bukit Gunungsari Kecamatan Salam Kabupaten Magelang. Universitas Gadjah Mada.

Lowrie, & William. (2007). Fundamental of Geophysics (2nd ed.). New York: Cambridge University Press.

Milsom. (2003). Field Geophysics, The Geological Field Guide Series (3rd ed.). London: West Sussex: John Wiley & Sons.

Pambudi, R. S. (2011). Studi Akuifer pada Bentuklahan Dataran Fluviomarin dan Gumuk Pasir di Desa Parangtritis, Kecamatan Kretek, Bantul menggunakan Metode Geolistrik Electrical Resistivity Tomography.

Rahardjo, W., Sukandarrumidi, H. M. ., & Rosidi. (1995). Peta Geologi Lembar Yogyakarata, Jawa Sklaa 1:100.000. Indnonesia.

Richards, L. A., Magnone, D., Sültenfuß, J., Chambers, L., Bryant, C., Boyce, A. J., … Polya, D. A. (2019). Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters. Science of the Total Environment, 659, 699–714. https://doi.org/10.1016/j.scitotenv.2018.12.437.

Setiadi, H., Mudiana, W., & Akus, U. T. (1990). Peta Hidrogeologi Indonesia Skala 1 : 100.000 Lembar 1407-5 dan Lembar 1408-2 Yogyakarta. Indonesiaa.

Sharp, J. M. (2007). A Glossary of Hydrogeological Term. Texas: Department of Geological Sciences The University of Texas.

Singhal, B. B. S., & Gupta, R. P. (2010). Applied Hydogeology of Fracture Rock. London: Springer Dordrecht Heidelberg London.

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (2004). Applied Geophysics (2nd ed.). London: Cambridge University Press.

Todd, D. K., & Mays, L. W. (2005). Groundwater Hydrology (3rd ed.). Denver: John Wiley & Sons, Inc.

Uhlemann, S., Kuras, O., Richards, L. A., Naden, E., & Polya, D. A. (2017). Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. Journal of Asian Earth Sciences, 147(March), 402–414. https://doi.org/10.1016/j.jseaes.2017.07.043.

Ungureanu, C., Priceputu, A., Bugea, A. L., & Chiricǎ, A. (2017). Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites. Procedia Engineering, 209, 202–209. https://doi.org/10.1016/j.proeng.2017.11.148



DOI: https://doi.org/10.22146/jntt.56617

Article Metrics

Abstract views : 3374 | views : 4061

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Nasional Teknologi Terapan (JNTT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Nasional Teknologi Terapan Indexed by:


  

Web
AnalyticsView My Stats