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Abstract. The greatest solution of an inequality K⊗X � X � L�X to solve the optimal

control problem for P-Temporal Event Graphs, which is to find the optimal control that

meets the constraints on the output and constraints imposed on the adjusted model prob-

lem (the model matching problem). We give the greatest solution K ⊗X � X � L�X

and X � H with K,L,X,H matrices whose are entries in a complete idempotent semir-

ings. Furthermore, the authors examine the existence of a sufficient condition of the

projector in the set of solutions of inequality K ⊗X � X � L�X with K,L,X matrix

whose entries are in the complete idempotent semiring. Projectors can be very necessary

to synthesize controllers in manufacturing systems that are constrained by constraints

and some industrial applications. The researcher then examines the requirements for

the presence of the greatest solution was called projector in the set of solutions of the

inequality K⊗X � X � L�X with K,L,X matrices whose are entries in an complete

idempotent semiring of interval. Researchers describe in more detail the proof of the

properties used to resolve the inequality K ⊗ X � X � L � X. Before that, we give

the greatest solution of the inequality K⊗X � X � L�X and X � G with K,L,X,G

matrices whose are entries in an complete idempotent semiring of interval.

Keywords: Complete idempotent semirings, projector, max plus algebra, complete idem-

potent semiring of intervals, greatest solution.
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Abstrak. Solusi terbesar dari pertidaksamaan K ⊗ X � X � L � X untuk menyele-

saikan masalah kontrol optimal untuk P-Temporal Event Graphs, yaitu menemukan kon-

trol optimal yang memenuhi kendala pada output dan kendala dikenakan pada masalah

model yang disesuaikan (model matching problem). Kami memberikan solusi terbaik

K ⊗ X � X � L � X dan X � H dengan matriks K,L,X,H yang merupakan en-

tri dalam semiring idempoten lengkap. Selain itu, penulis memeriksa syarat cukup

adanya solusi terbesar yang disebut proyektor dalam himpunan solusi pertidaksamaan

K ⊗X � X � L �X dengan K,L,X matrix yang entri-entrinya ada di semiring idem-

poten lengkap. Proyektor dapat sangat diperlukan untuk mensintesis pengontrol dalam

sistem manufaktur yang dibatasi oleh kendala dan beberapa aplikasi industri. Peneliti

kemudian memeriksa persyaratan untuk adanya proyektor di himpunan solusi dari keti-

daksetaraan K ⊗X � X � L�X dengan matriks K,L,X yang merupakan entri dalam

semiring idempoten lengkap interval. Peneliti menjelaskan lebih rinci bukti sifat yang

digunakan untuk menyelesaikan pertidaksamaan. Sebelum itu, kami memberikan solusi

terbaik K⊗X � X � L�X dan X � H dengan matriks K,L,X,H yang entri dalam

semiring idempoten lengkap interval.

Kata-kata kunci: semiring idempotent lengkap, proyektor, aljabar maks plus, semiring

idempoten lengkap interval, solusi terbesar.

1. INTRODUCTION

When viewed from the structure of algebra, semiring is a generalization of the
ring. The idempotent property given to the semiring forms a new structure, which is
the idempotent semiring. Many issues in optimization theory and other areas in mathe-
matics are non-linear problems but can be seen as linear over idempotent semiring. The
existence of the idempotent property of the sum operation, that is, ∀p ∈ S, p⊕p = p, can
relate a partial order relation to the addition operation, so that the idempotent semir-
ings forms sup - semilattices. An idempotent semirings is closed against an infinite sum
and its distribution multiplicity to an infinite sum, so an idempotent semirings is said
to be complete. Idempotent semirings generally do not have an inverse of their sum
and multiplication operations, except in max plus algebra, so in Baccelli [2] explained
that the residuation theory is used in solving equations defined by idempotent semiring.
One of the equations discussed is the K ⊗ X � L with K,X,L matrices with entries
of elements from the complete idempotent semirings of S. The greatest solution of the
equation K ⊗X � L can be obtained using residuation theory. Gaubert [8] examines
the greatest solution of the K ⊗X � L equation with K ∈ Sn×p and X ∈ Sp×1. Fur-
thermore, Hardouin [4] also discusses the greatest solution of the K ⊗X � L equation,
but K ∈ Sn×p and X ∈ Sp×m.

As you are familiar, while idempotent has the multiplicative operation of ⊗ dis-
tributive to the sum of ⊕. Subsequently, Hardouin [4] introduced the duality of the ⊗
multiplication operation, which is a dual � product that has the distributive � distribu-
tive property of ∧. In addition to dual products on idempotent semiring, dual products
are also given on the top matrix of idempotent semiring notated K � X, defined by
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operation (K �X)ij =
∧
p=1,...,n(kip � xpj) with ∧ is the greatest lower bound. Then

by finding the dual residuals of the dual products, we can get the smallest solution of
the equation K �X � L. Based on the solution equation K ⊗X � L and K �X � L,
Ouerght and Hardouin [15] explain the greatest solution that satisfies the equation
K ⊗X � X � L �X with K,L ∈ Sn×n. Ouerght and Hardouin [15] use the greatest
solution of this equation to solve optimal control problems for P-temporal event graphs,
that is, looking for the greatest control that contented the output and the constraints
imposed on the adjusted model problem (the model matching problem). Furthermore,
Hardouin together with Brunsch, Maia, Raisch [4] explained the characteristics of the
equation K ⊗ X � X � L � X related to the set of solutions. The author completes
the proof of the properties of the equation K ⊗X � X � L�X.

J.P Quadrat and Cohen [7] have constructed linear projections in idempotent
semiring (dioid). One example of idempotent semiring is max plus algebra, so J.P
Quadrat and Cohen [7] continue their research on linear projectors in algebra max plus.
Projectors can be very necessary to synthesize controllers in manufacturing systems that
are constrained by constraints and some industrial applications. As a result, Hardouin
together with Brunsch, Maia, Raisch [4] provided a sufficient requirement for projectors
in the set of solution equations K ⊗X � X � L�X.

In the research which did author before, have given Theorem which the greatest
solution in the inequality K⊗X � X � L�X with K,L,X are a complete idempotent
semirings. Now, we applied in the equality K⊗X � X � L�X with K ∈ ISn×n,L ∈
ISn×n,X ∈ ISn×m are semirings idempotent complete of interval and S is a complete
idempotent semiring. Furthermore, Hardouin and Brunsch [4] commented that the
required situation for the existing of projectors in the set of solution equations K⊗X �
X � L�X with K ∈ ISn×n,L ∈ ISn×n,X ∈ ISn×m are semirings of interval. The
researcher proof different condition with Hardouin[4], the necessary condition for the
beingness of projector as the greatest solution in the set of solution equations K⊗X �
X � L�X but with K ∈ ISn×n,L ∈ ISn×n,X ∈ ISn×m are a complete idempotent
semiring of interval and S is an complete idempotent semiring. The author describes
in more detail the proof of the properties used to resolve the inequality. But, the
the existence of projectors in the set of solution inequality K⊗X � X � L�X with
K ∈ ISn×n,L ∈ ISn×n,X ∈ ISn×m are a semiring idempotent complete of interval
with S is a complete idempotent semiring.

2. MAIN RESULT

2.1. Semiring Idempotent. Any arbitrary set which is endowed by two binary op-
eration and hold any axiom, then form a structure algebra. In this article, structure
algebra which is explained is an idempotent semiring.
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Definition 2.1. [6] Any arbitrary set of S and two binary operations at S are given,
namely the addition of ⊕ and the multiplication operation of ⊗ . The S set with two
binary operations ⊕ and ⊗ is called semiring idempotent, denoted (S,⊕,⊗), if:

(i). (S,⊕, ε) is an idempotent commutative monoid, i.e. ∀k ∈ S(k ⊕ k = k)
(ii). (S,⊗, e) is monoid

(iii). Operations ⊗ are distributive to operations ⊕
(iv). There are absorb elements to the operation of ⊗, i.e. ∀k, ε⊗ k = k ⊗ ε = ε

An idempotent semiring S could be complete with a canonical order explained as
k � l if and only if k = k⊕ l. Thus, S is sup-semilattice, and k⊕ l is the lower upper
bound of k and l. A semiring of S is said complete semiring if

(i). ∀ki ∈ S, i ∈ I,
⊕

i∈I ki ∈ S item ∀ki, l ∈ S, i ∈ I, (
⊕

i∈I ki)⊗ l =
⊕

i∈I(ki ⊗ l)
Furthermore, the sum of all elements in the complete semiring of S is denoted > =⊕

x∈S x. In complete lattice defined k � l⇔ k = k ∧ l. The complete slope of S has
the same structure as complete lattice which has the greatest lower bound of k and
l denoted k ∧ l

2.2. Theory of Residuation. The theory of residuation explains the inverse of the
mapping which preserves the relation � sequence which is defined on the ordered set,
that is, the set which is supplemented by a partial order relation. In the following, we
will give definitions of residuated mapping and dually residuated mapping which are
widely used in proving some of the following theorems.

Definition 2.2. [2] Given the ordered set R and S and the canonical relation �. The
mapping that preserves the order f : R → S is called to be a mapping residuated if
for every y ∈ S, the lower upper bound of the subset of {x ∈ R | f(x) � y} exists and is
a element of the subset, the element is indicated f ](y). Meanwhile, mapping f ] : S → R
is said to be a residual from f . If f is a residuated mapping, then f ] is an unique
mapping that preserves the sequence such that

f ◦ f ] � IdS dan f ] ◦ f � IdR (2.1)

where Id represents the identity mapping of R and S.
The g mapping is said to be a mapping dually residuated if for every y ∈ S, the
greatest lower bound of the {x ∈ R | g(x) � y} exists and is a element of the subset, this
element is denoted gb(y). Next, mapping gb : S → R is said to be a dual residual from
g. While g is mapping dually residuated, gb is a unique mapping that preserves the
sequence such that

g ◦ gb � IdS and gb ◦ g � IdR (2.2)

Theorem 2.3. [2] Given idempotent semirings R and Q. If given h : R → Q and
f : R → Q are a residuated mapping then hold the next property:

f � h⇔ h] � f ]

Theorem 2.4. [2] Given idempotent semirings R and Q. If we have h : R → Q and
g : R → Q are dually residuated mappings then hold the following proposotion:

g � h⇔ hb � gb
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Proposition 2.5. [2] Given a semiring S and Q. Given f : S → Q is a residuated
mapping, a mapping Pf = f ◦ f ] is projector and Pf (c) with c ∈ Q is the greatest
element in Imf less than or equal c. Given g : S → Q is a dually residuated mapping,
the mapping Pg = g ◦ gb is the projector and Pg(d) with d ∈ Q is the smallest element
in Img greater than or equal d.

Proposition 2.6. [?]Given f : D → E is a residuated mapping, g : D → E is a dual
residuated mapping and Dsub ( Esub) is a complete subsemiring of D (E)

(1) the mapping f|Dsub
is a residuated mapping, and its residual is given as the

follows :
(f|Dsub

)] = (f ◦ Id|Dsub
)] = (Id|Dsub

)] ◦ f ]

(2) If Imf ⊂ Esub then mapping Esub|f is residuated mapping and its residual is
given as the follows :

(Esub|f)] = f ] ◦ Id|Esub
= (f ])Esub

(3) The mapping g|Dsub
is dual residuated mapping and its dual residual is set as

the follows :

(g|Dsub
)[ = (g ◦ Id|Dsub

)[ = (Id|Dsub
)[ ◦ g[

(4) if Img ⊂ Esub then mapping Esub|g is dual residuated mapping and its dual
residual is set as the follows :

(Esub|g)[ = g[ ◦ Id|Esub
= (g[)Esub

Theorem 2.7. [?]Given a semiring S. If a mapping h : S → S is residuated mapping
and g : S → S is a dually residuated mapping, then hold the next proposition:

h is a closuremapping ⇔ h] is s dual closuremapping

⇔ h] ◦ h = h⇔ h ◦ h] = h] (2.3)

g is a dual closuremapping ⇔ gb is a closuremapping

⇔ g ◦ gb = g ⇔ gb ◦ g = gb (2.4)

Proposition 2.8. [?]Given S is a semiring, h : S → S, g : S → S, and f : S → S are
three mappings, and asumption g and f are two closure mappings which is residuated.
The statement is equavalent :

Imh ⊂ Imf ⇔ f ◦ h = h

g � f ⇔ f ◦ g = f = g] ◦ f ⇔ Imf ⊂ Img ⇔ Imf ⊂ Img]

Proposition 2.9. Given S a complete idempotent semirings. For all k, l, o ∈ S.

(1) (k\l) ∧ (o\l) = (k ⊕ o)\l
(2) (k ⊗ l)\x = l\(k\x)

Definition 2.10. Kleene Star [?]Given S a complete semiring. A aditive closure of
matrix K ∈ Sn×n is explained as following :

KS : Sn×n → Sn×n,K 7→ K∗ =
⊕
i∈N0

Ki
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where K0 = E,Kn = K ⊗Kn−1 and E a identity matrix, i.e. ∀i, j ∈ [1, n], Eii = e and
Eij = ε if i 6= j.

Proposition 2.11. [?]Given K ∈ Sn×n and X ∈ Sn×p. According Definition 2.10,
Mappings LK∗ : Sn×p → Sn×p, X 7→ K∗ ⊗X are closure mappings. Therefore,

K∗ ⊗K? ⊗X = K∗ ⊗X

As consequent, that is equivalent with

X = K∗ ⊗X ⇔ X ∈ ImLK∗

A mapping L]K∗ is a dually closure mapping. Therefore,

K∗ \K∗ \X = K∗ \X (2.5)

According an Equation 2.3,LK∗ ◦ L]K∗ = L]K∗ dan L]K∗ ◦ LK∗ = LK∗ . Therefore,

K∗ ⊗ (K∗ \X) = K∗ \X (2.6)

and

K∗ \ (K∗ ⊗X) = K∗ ⊗X (2.7)

According Proposition 2.5, The Equation 3.2 is meant L]K∗ , which is projector on
ImLK∗ . Given L ∈ Sn×n such that L∗ � K∗ i.e. LL∗ � LK∗ then according Proposi-
tion 2.8, the following statement is equivalent :

L∗ � K∗ ⇔ K∗L∗X = K∗X = L∗ \ (K∗X)⇔ ImLK∗ ⊂ ImLL∗ ⇔ ImLK∗ ⊂ ImL]L∗
(2.8)

Proposition 2.12. Given S a complete idempotent semiring. A matrix K ∈ Sn×n

dan X ∈ Sn×p. A mapping LA∗ : Sn×p → Sn×p, X 7→ K∗ ⊗X is a closure mapping,
therefore,

K∗ ⊗K∗ ⊗X = K∗ ⊗X

As a consequent, the following statement is equivalent :

X = K∗ ⊗X ⇔ X ∈ Im LK∗ (2.9)

Lemma 2.13. Given a complete idempotent semiring S and a matrix K ∈ Sn×n dan
X ∈ Sn×p. The next statement is equivalent :

(1) X � K\X
(2) X � K ⊗X
(3) X = K∗ ⊗X
(4) X = K∗\X

Lemma 2.14. [?] Given K ∈ Sn×n and X ∈ Sn×p. The next statement is equvalent :

X � K \X ⇔ X � KX ⇔ X = K∗X ⇔ X = K∗ \X
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3. DUAL PRODUCT OVER A COMPLETE IDEMPONTENT
SEMIRINGS

In the Thomas Brunch article[4], dual products are defined on the side. However,
complete and idempotent conditions are required. Full conditions are needed because
there is a top element which is the definition of an infinite number of elements. The
idempotent requirement is needed because of the assumption that the distributive ∧ of
an infinite element. So ∧ needs two elements to have a partial order relation. Even
though a semiring can be equipped with partial order relations if there is an idempotent
propperty. Therefore, dual products are defined in a complete idempotent semiring

Definition 3.1. ((Dual product)) Given a complete idempotent semiring S, dual
products in S, denoted �, are rules that are assumed and must have e as a neutral
element, ie (S, e,�) monoid. Furthermore, this dual product is supposed to be distribu-
tive of ∧ from infinite elements, and the element > has an absorbing property that is
>� k = k �> = >.

Definition 3.2. ((Dual matrix product)) Given a complete idempotent semiring S
and K ∈ Sn×p, L ∈ Sp×m and O ∈ Sn×m is a matrix, then O = K � L is explained as
next:

Oij = (K � L)ij =
∧

k=1...p

(kim � lmj)

The identiy matrix is denoted E� such that the entries are E�ii = e and E�ij = > for
i 6= j.

In the Brunch Thomas article [4], S is just a semiring. it is lacking if it is a
sufficient condition because ∧ requires an idempotent S trait. This idempotent property
is needed so that each element in S could be equipped with a partial order relation. so
∧ is an upper semicontinous mapping.

Proposition 3.3. Given a idempotent semiring S and K ∈ Sp×n, X ∈ Sn×m is a
matrix, mapping ∧K : Sn×m → Sp×m, X 7→ K�X is an upper semicontinuous mapping,
i.e.

∧K(
∧
X∈X

X) =
∧
X∈X

∧K(X)

In the Thomas brunch article [4], it was only given S a semiring. Even though
∧K : Sp×m 7→ Sn×m is dually residuated. As such, elements in S must be able to order
need idempotent properties in the semiring as S. Therefore, S must be an idempotent
semiring.

Corollary 3.4. Given a complete idempotent semiring S and K ∈ Sn×p matrix. Map-
ping ∧K : Sp×m → Sn×m, X 7→ K � X is dual residuation, and dual residuals are
denoted

∧[K : Sn×m → Sp×m, X 7→ K •X
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with rules:

(K •X)ij =

n⊕
q=1

kqi • xqj

and > • x = ε, ε • x = >, ε • ε = ε

On the thomas brunch [4] article, is endowed on a semiring. However, that is not
enough because ∧ needs a partial order relation to determine the lower bound of ∧. So∧

must be endowed on an idempotent semiring.

Definition 3.5. Given S is a idempotent semiring.
∧

closure of L ∈ Sn×n is defined
as

L∗ =
∧
q∈N0

L�q

where L�0 = E� and L�k = L� L�(q−1)

In the Thomas brunch article [4], the proposition below is given only S while it is
a complete semiring. this is not enough, because the proof is needed ∧[L is lower semi-
continuous. The mapping ∧bL : Sn×m 7→ Sp×m is the lower semi-continuous if S is a
complete ordered set. A complete order set can be formed if it is provided with a partial
order relation. For a set a partial order relation can be endowed if the elementin set are
idempotent. So set S for Proposition 3.6 must be a complete idempotent semiring.

Proposition 3.6. Given S a complete idempotent semirings. A matrix K ∈ Sn×p,
L ∈ Sn×r, and X ∈ Sp×q. If every entry kij ∈ K hold bij • (k ⊗ x) = (lij • k) ⊗ x for
all k, x ∈ S, then

L • (K ⊗X) = (L •K)⊗X

In the Thomas Brunch article [4], semiring S is not given as idempotent. A
mapping ∧L∗ is a mapping of X 7→ L∗ �X. Whereas L∗ is defined as

∧
q∈N0

L�q so it
requires a partial order relation. As such, S must be an idempotent semiring.

Proposition 3.7. Given S is an idempotent semiring, L ∈ Sn×n and X ∈ Sn×p.
Because ΛL is upper semicontinous and is based on the Definition 3.5, the mapping
ΛL∗ : Sn×p 7→ Sn×p, X 7→ L∗ �X is a dual closure mapping, therefore,

L∗ � L∗ �X = L∗ �X (3.1)

and consequently, fulfill the following equivalents

X = L∗ �X ⇔ X ∈ ImΛL∗ (3.2)

In the Thomas Brunch article [4], S is not described as idempotent. Note that
L∗ is defined as

∧
q∈N0

L�q and is described for proof of 2 ⇒ 3 and 4 ⇒ 1 so that you
need partial order relations. As such, S must be idempotent semiring.

Proposition 3.8. Given S is a complete idempotent semiring and L ∈ Sn×n dan
X ∈ Sn×p are matrix. The statement below is equivalent:

(1) X � L�X
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(2) L •X � X
(3) L∗ •X = X
(4) L∗ �X = X

In the Thomas Brunch article [4], S is given a semiring. Note the mapping LK∗
is defined as a mapping of X 7→ K∗ ⊗ X so it requires S is a complete semiring so
that K∗ is defined. In addition to the mapping ∧L∗ , a defined X 7→ L∗ � X requires
a S idempotent condition so that L∗ is defined, so S must be a complete idempotent
semiring.

Proposition 3.9. Given a complete idempotent semiring S dan K,L ∈ Sn×n dan
X ∈ Sn×m. The next statement is equivalent :

K ⊗X � X � L�X ⇔ X ∈ Im LK∗ ∩ Im ΛL∗

4. CONCLUDING REMARK5

4.1. Projector in The Solution Set of An Inequality K ⊗ X � X � L � X.
This Theorem motivated from Theorem in Ouergh, et all(2006)[15]. That theorem is
explained as follows :

Proposition 4.1. [?]Let us assumed a dioid D, a reticulated group G ⊂ D and matrices
A,G ∈ Dn×n and each entry of G in G. The greatest solution of X such that :

A⊗X � X � G�X and X � B
is

X̂ = ((G∗ •A∗)∗)\B

In article which is written by the Ouergh, it has not yet been defined as a dual
product operation, so Proposition 4.1 requires element of G in the reticulated group.
However, this research has defined dual product operations so that these requirements
are not needed. Then the following theorem can be given

Proposition 4.2. Given a complete idempotent semiring S, and matrix K,L,G ∈
Sn×n. The greatest solution X which hold :

K ⊗X � X � L�X and X � G
is

X̂ = ((L∗ •K∗)∗)\G

Proof. (1) We are shown K ⊗X � X � L�X dan X � G⇒ X � X̂. According
Proposition 3.9, K ⊗X � X � L�X ⇔ X ∈ Im LK∗ ∩ Im ΛL∗ . It means X
must hold X = L∗ • (K∗ ⊗X).

X = L∗ • (K∗ ⊗X) ⇔ X = (L∗ •K∗)⊗X (Proposisi 3.6)

⇔ X = ((L∗ •K∗)∗)\X (Lemma 2.13)

Futhermore, K ⊗X � X � L�X and X � G⇔ X = ((L∗ •K∗)∗)\X and
X � G. According Theorem 2.13 X = ((L∗ •K∗)∗)\X ⇔ (L∗ •K∗)⊗X � X.

Because (L∗ •K∗)⊗X � X dan X � G then X � X̂ = ((L∗ •K∗)∗)\G.
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(2) We will be shown X̂ � G, X̂ = K∗ ⊗ X̂, and X̂ = L∗ � X̂.

First we will be shown X̂ ∈ Im LK∗ which equivalent X̂ = K∗⊗X̂ = K∗\X̂.

According Lemma 2.13, X̂ hold

(L∗ •K∗)⊗ X̂ � X̂ � (L∗ •K∗)\X̂ (4.1)

Because LK∗ an isoton mapping and X̂ � (L∗ • K∗)\X̂, then K∗ ⊗ X̂ �
K∗ ⊗ ((L∗ •K∗)\X̂). According Theorem 2.3 is found

K∗\X̂ � K∗\((L∗ •K∗)\X̂)

Furthermore,

K∗\((L∗ •K∗)\X̂) = ((L∗ •K∗)⊗K∗)\X̂(Proposition 2.9)

= (L∗ • (K∗ ⊗K∗))\X̂(Proposition 3.6)

= (L∗ •K∗)\X̂

So we are found K∗\X̂ � (L∗ • K∗)\X̂. According an inequality 4.1, (L∗ •
K∗)\X̂ � X̂. As a result, K∗\X̂ � (L∗ • K∗)\X̂ � X̂. So we are found

K∗\X̂ � X̂. So that, X̂ � K∗\X̂ (because K∗ � E) then K∗\X̂ = X̂, i.e.

X̂ ∈ Im L∗.
The second step, we are shown X̂ ∈ Im ΛL∗ , i.e. X̂ = L∗ � X̂ = L∗ • X̂.

From an inequality 4.1 is found X̂ � (L∗ •K∗)⊗ X̂ = L∗ • (K∗ ⊗ X̂) = L∗ • X̂
(because X̂ = K∗ ⊗ X̂). in the other side, L∗ � E�. On account of ΛL∗ is an

isoton mapping, then L∗� X̂ � E�� X̂. Therefore, according Theorem 2.4 we

are found X̂ � L∗ • X̂. So that X̂ = L∗ • X̂ = L∗ � X̂.
The last step because (L∗ • K∗)∗ � E, then (L∗ • K∗)∗ � G � E � G.

According Theorem 2.3, we are found (L∗ •K∗)∗\G � G. So X̂ � G
�

In the Thomas Brunch article [?], S is given in one piece. Note the P is defined
P : Sn×m → Sn×m, X 7→ (L∗ • K∗)∗ \ X. Because K∗ can be defined, it requires a
complete S condition while L∗ needs a pasial relation so S must be idempotent semiring.
Thus, S must be a complete idempotent semiring.

Proposition 4.3. Given S a complete idempotent semiring and K,L ∈ Sn×n and
X ∈ Sn×m. If ∀X, an equality L∗ • (K∗ ⊗X) = (L∗ •K∗)⊗X is hold, so a mapping

P : Sn×m → Sn×m, X 7→ (L∗ •K∗)∗ \X (4.2)

is projector in ImLK∗ ∩ ImΛL∗ . Officially,

P(X) = {
∨
Y |Y � X andY ∈ ImLK∗ ∩ ImΛL∗} (4.3)

Proof. According an Equation 3.1 and an Equation 3.2, P is projector on an image
L(L∗•K∗)∗ and P(X) � X. As claimed by Definition 3.5, L∗ � E�, then L∗ • K∗ �
E� • K∗ = K∗ and (L∗ • K∗)∗ � (K∗)∗, which is according Equation 2.8, so that
ImL(L∗•K∗)∗ ⊂ ImLK∗ . therefore, P(X) ∈ ImLK∗ .
Because P(X) ∈ ImL(L∗•K∗)∗ means P(X) = (L∗ • K∗) ∗ P(X). According Lemma
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2.14,that equation equivalent with P(X) � (L∗•K∗)⊗P(X). Bacause of the assumtion,
is found an equation (L∗ • K∗) ⊗ P(X) = L∗(K

∗ ⊗ P(X)). Furthermore, P(X) ∈
ImLK∗ , so that K∗ ⊗P(X) = P(X). Therefore,

P(X) � (L∗ •K∗)⊗P(X) = L∗ • (K∗ ⊗P(X)) = L∗ •P(X)

in the other side, L∗ � E� then

L∗ •P(X) � E� •P(X) = P(X)

Therefore, P(X) = L∗ •P(X). Furthermore, according Proposition 3.8 we are found

P(X) = L∗ •P(X) = L∗ �P(X)

then with consider equivalence 3.2, so that P(X) ∈ ImΛL∗ .
next, we will be shown P(X) is a greatest element in ImLK∗ ∩ ImΛL∗ least than X.
Given Y ∈ ImLK∗ ∩ ImΛL∗ such that Y � X. So that, as claimed by Lemma 2.14 and
Proposition 3.8 are found equivalence:

Y = K∗ ⊗ Y = L∗ ⊗ Y = L∗ • Y = L∗(K
∗ ⊗ Y )

and because of an asumption L∗ • (K∗ ⊗ Y ) = (L∗ • K∗) ⊗ Y . From Definition 2.2,
Y = (L∗ • K∗) ⊗ Y so that Y � (L∗ • K∗) ⊗ Y . According Lemma 2.14, is found

Y = (L∗ • K∗)∗ \ Y . The mapping L]L∗•K∗∗ become an isoton mapping, then hold
implication Y � X ⇒ (L∗ •K∗)∗ \ Y � (L∗ •K∗)∗ \X, which is meant Y � X then
Y = (L∗ •K∗)∗ \ Y � P(X) �

4.2. The Greatest Solution in The Inequality of K⊗X � X � L�X with
K ∈ ISn×n,L ∈ ISn×n,X ∈ ISn×m are a complete idempotent semirings of
intervals. In the Thomas Brunch article [?], S is given semiring. Note that the defi-
nition of a closed interval is a set of x = [x, x] = {t ∈ S|x � t � x}, where x ∈ S and
x ∈ S (with x � x) is said lower bound and upper bound of intervals x. The x ∈ S
and x ∈ S elements are the upper and lower limits. In order to determine the lower
and upper limits, partial order relations need to be completed. A semiring must be an
idempotent semiring in order to be provided with a partial order relation. As such, S
must be a idempotent semiring.

Definition 4.4. (Interval) Given S an idempotent semiring. A closed interval is set
x = [x, x] = {t ∈ S|x � t � x}, where x ∈ S dan x ∈ S (with x � x) is said lower
bound and upper bound of interval x.

Definition 4.5. (Interval Semiring) An interval set is denoted IS, is equiped with
operation algebra element

x⊕y , [x⊕ y, x⊕ y] dan x⊗y , [x⊗ y, x⊗ y] (4.4)

is semiring, with intervals ε = [ε, ε] and e = [e, e] are element netral to operation ⊕
and ⊗ of IS. Relation order canonical �IS which is induced of addition such that
x⊕y = [x ⊕ y, x ⊕ y] ⇔ x �IS y ⇔ x �S y danx �S y where �S order relation of an
idempoten semiring S.
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As note, for avoid ambiguity, order relation in IS will be denoted �. Operation
4.4 is an interval which is solid load for all the result of operation, is equal to element
which is change of that interval operation.

Given S is a complete idempotent semiring and {xα} is an uncountable subset of
IS, the addition uncountable of element of that subset as follows:⊕

α
xα = [

⊕
α

xα,
⊕
α

xα]

A top element is set by > = [>,>]. If x and y are intervals in IS, then x ⊂ y if and only
if y � x � x � y. Furthermore, x = y if and only if x = y and x = y. An interval such
that x = x is said degenerate. The degenerate interval represented an indeterminate
value. In this case, x is denoted x. The interval semiring IS is not semifield even if
S only one. Of course, exception for the degenerate interval, the interval which is not
loaded an invers multiplikatif.

Based on the definition of dual product 3.1, then the definition of dual product
IS is on S is a complete idempotent semiring.

Definition 4.6. (Dual Product of Complete Idempotent Semiring IS) In an

idempotent semiring of interval, dual product � is explained as x � y , [x � y, x � y]
where � is dual product in a complete idempotent semiring S.

A mapping which preserve order load exsistence over an interval semiring with
consider image of an interval bound in the independent direction. Especially aditive
closure and ∧ closure could be calculated in efficient direct and are explained as the
next :

Proposition 4.7. Given IS is a complete idempotent semiring of interval. Aditive
closure of matrix A ∈ ISn×n is given as the following :

K∗ = [K,K]∗ = [K∗,K
∗
]

and ∧ closure adalah

K∗ = [K,K]∗ = [K∗,K∗]

Definition 4.8. (Semiring of Pairs) [?]Given S a complete semiring. Pair set
(x′, x”) with x′ ∈ S and x” ∈ S are complete semirings, is denoted C(S) with (ε, ε)
elemen nol, (e, e) identity element and (>,>) top element. Set of pairs (x′, x”), x′ � x”
is complete subsemiring of C(S), is called C0(S)

Proposition 4.9. [?]The Canonical injection Id|C0(S) : C0(S) → C(S) is a residuated

mapping and also a dual residuated mapping. Its residual Id]|C0(S) is projector. Its

practical calculation as following:

Id]|C0(S)((x
′, x”)) = (x′ ∧ x”, x”) = (x̃′, x̃”) (4.5)

Its dual residual Id[|C0(S) also is projector. Its practical calculation as following :

Id[|C0(S)((x
′, x”)) = (x, x′ ⊕ x”) = (x̃′, x̃”) (4.6)



THE GREATEST SOLUTION IN THE INEQUALITY OF K⊗X � X � L�X 53

In the Thomas Brunch article [?], IS is only an semiring of intervals. whereas L]a
is defined so that the lower bound must be found. to find the lower bound, you need a
partial order relation. So IS must be an idempotent semiring of intervals.

Proposition 4.10. [Given IS is an idempotent semiring of intervals. A mapping
Lk : IS → IS, x 7→ k⊗x are residuated mappings. Its residual mapping is

L]k : IS → IS,k\x = [k \ x ∧ k \ x, k \ x]

Therefore, k\l is a greatest solution of k⊗x � l, and equal with achieve if l ∈ ImLk

Proposition 4.11. Given IS is an idempotent semiring of interval. For all k, l,o ∈
IS.

(1) (k\l) ∧ (o\l) = (k⊕o)\l
(2) (k⊗l)\x = l\(k\x)

Analog, can be shown a mapping Rk : IS → IS,x 7→ x⊗k is a residuated
mapping.

Proposition 4.12. [?]A mapping ∧(k′,k”) : C0(S), (x′, x”) 7→ (k′ � x′, k” � x”) with
(k′, k”) ∈ C0(S) is a dual residuated mapping. Its dual residual as the follows :

∧[(k′,k”) : C0(S)→ C0(S), (x′, x”) 7→ (k′ • x′, k′ • x′ ⊕ k” • x”) (4.7)

Proof. According Corollary 3.4, a mapping ∧k′,k” : C(S) → C(S), (x′, x”) 7→ (k′ �
x′, k” � x”) is a dual residuated mapping and its dual residual ∧[(k′,k”) : C0(S) →
C0(S), (x′, x”) 7→ (k′ •x′, k′ •x′⊕k”•x”). Pemetaan ∧(k

′, k”) preserve order, therefore,
Im∧(k′,k”)|C0(S) ∈ C0(S). Futhermore, canonical injection Id|C0(S) : C0(S) → C(S) is
dual residuated mapping. Therefore, Proposition 2.6 find

(C0(S)|∧(k′,k”)|C0(S))
[ = (C0(S)|∧(k′,k”) ◦ Id|C0(S))

[ = (Id|C0(S))
[ ◦ (∧(k′,k”))

[ ◦ Id|C0(S)

With the result, Equation 4.6 from Proposition 4.9 find Equation 4.7. �

In the Thomas Brunch article [?], S is a semiring and IS is only a semiring of
interval. whereas ∧[k is defined so that the lower bound must be found. to find the
lower bound, you need a partial order relation. So S and IS must be an idempotent
semiring of intervals.

Proposition 4.13. Given S is a idempotent semirings and IS is an idempotent semir-
ing of intervals. A mapping ∧k : IS → IS,x 7→ k�x is a dual residuated mapping. Its
dual residual is

∧[k : IS → IS,x 7→ k•x = [k • x, k • x⊕ k • x]

Therefore, k • l is a smallest solution of k�x � l, and equal if l ∈ Im∧k

Proof. Given ψ : C0(S) → IS, (x′, x”) 7→ [x, x] = [x′, x”] is a mapping which mapp
order pair in an interval. This mapping is an isomorfism, because that mapping just
have relation with bound for handling an interval. Then the result directly according
to Proposisi 4.12. �
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Corollary 4.14. Given S idempotent semiring and K ∈ ISn×p,X ∈ ISp×q,Y ∈
ISn×q is matrix. According to Cororally 3.4, a mapping ∧K : ISp×q → ISn×q,X 7→
K�X is a dual residuated mapping. Its dual residual equal to :

∧[K : ISn×q → ISp×q,Y 7→ K•Y = [K • Y ,K • Y ⊕K • Y ] (4.8)

According to Proposition 2.11, we can apply in a complete idempotent semiring
of intervals as the follows:

Proposition 4.15. Given IS is a complete idempotent semiring of intervals, matrices
K,L,O ∈ ISn×n and X ∈ ISn×p. The next statements hold :

K∗⊗K?⊗X = K∗⊗X(4.9)

K∗\K∗\X = K∗\X(4.10)

K∗⊗(K∗\X) = K∗\X(4.11)

K∗\(K∗⊗X) = K∗⊗X(4.12)

O∗K∗ ⇔ K∗O∗X = K∗X = O∗ \ (K∗X)⇔ ImLK∗ ⊂ ImLC∗ ⇔ ImLK∗ ⊂ ImL]O∗(4.13)

whereas the dual product, the proposition can be found :

L∗�L∗�X = L∗�X (4.14)

Consequently from Equation 4.14 fullfil the following equivalents :

X = L∗�X⇔ X ∈ ImΛL∗ (4.15)

and the following equivalences hold :

X � K⊗X⇔ X = K∗⊗X ⇔ X � K\X⇔ X = K∗\X⇔ X ∈ ImLK∗ (4.16)

X � L�X⇔ L∗�X = X⇔ L•X � X⇔ L∗•X = X⇔ X ∈ ImΛL∗ (4.17)

Based on Proposition 4.10 and Proposition 4.13, the next implications hold :

X ∈ ImLK∗ ⇒ X = [K∗ ⊗X,K∗ ⊗X] = [K∗ \X ∧K∗ \X,K∗ \X]

= [K∗ \X,K∗ \X] sinceK∗ ⊗X � K∗ ⊗X
X ∈ Im∧L∗ ⇒ X = [L∗ �X,L∗ �X] = [L∗ •X,L∗ •X ⊕ L∗ •X]

= [L∗ •X,L∗ •X] sinceL∗ �X � L∗ �X

According to Proposition 3.9, we can apply in a complete idempotent semiring of
intervals IS as the follows :

Proposition 4.16. Given a complete idempotent semiring S and matrices K,L ∈
ISn×n,K,L ∈ ISn×n,X ∈ ISn×m. The following statement is equivalent :

K⊗X � X � L�X⇔ X ∈ Im LK∗ ∩ Im ΛL∗

According to Proposition 4.2, we will apply in a complete idempotent semiring of
intervals IS, as the follows :
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Proposition 4.17. Given a complete idempotent semiring S, and matrices K,L ∈
ISn×n,K,L ∈ ISn×n,X,G ∈ ISn×m. The greatest solution X which hold :

K⊗X � X � L�X and X � G

is
X̂ = ((L∗•K∗)∗)\G

with

(L∗•K∗)∗\G = [((L∗•K
∗)∗\G)∧(((L∗•K

∗)⊕(L∗•K
∗
))∗\G), ((L∗•K

∗)⊕(L∗•K
∗
))∗\G]

Proof. (1) We are shown K⊗X � X � L�X dan X � G ⇒ X � X̂. According
Proposition 4.16, K⊗X � X � L�X ⇔ X ∈ Im LK∗ ∩ Im ΛL∗ . It means X
must hold X = L∗ • (K∗ ⊗X).

X = L∗•(K∗⊗X) ⇔ X = (L∗•K∗)⊗X (Proposisi 3.6)

⇔ X = ((L∗•K∗)∗)\X (Proposition 4.15)

⇔ X = [((L∗•K∗)∗ \X) ∧ ((L∗•K∗)∗ \X), ((L∗•K∗)∗ \X)](Proposition 4.10)

⇔ X = [((L∗ •K
∗)∗ \X) ∧ (((L∗ •K∗)⊕ (L∗ •K

∗
))∗ \X), (((L∗ •K∗)⊕

(L∗ •K
∗
))∗ \X)](Proposition 4.12 andProposition 4.7)

Futhermore, K⊗X � X � L�X and X � G ⇔ X = [((L∗ • K
∗)∗ \ X) ∧

(((L∗ •K∗)⊕ (B∗ •A
∗
))∗ \X), (((L∗ •K∗)⊕ (L∗ •K

∗
))∗ \X)] and X � G. As

claimed by Proposition 4.15 X = ((L∗•K∗)∗)\X⇔ (L∗•K∗)⊗X � X. Because

(L∗•K∗)⊗X � X dan X � G then X � X̂ = ((L∗ •K∗)∗)\G.

(2) We will be shown X̂ � G, X̂ = K∗⊗X̂, and X̂ = L∗�X̂.

First we will be shown X̂ ∈ Im LK∗ which equivalent X̂ = K∗⊗X̂ = K∗\X̂.

According to Proposition 4.15, X̂ hold

(L∗•K∗)⊗X̂ � X̂ � (L∗•K∗)\X̂ (4.18)

As a consequence of LK∗ an isoton mapping and X̂ � (L∗•K∗)\X̂, then

K∗⊗X̂ � K∗⊗((L∗•K∗)\X̂). According to Proposition 4.15 is found

K∗\X̂ � K∗\((L∗•K∗)\X̂)

Furthermore,

K∗\((L∗•K∗)\X̂) = ((L∗•K∗)⊗K∗)\X̂(Proposition 4.11)

= (L∗•(K∗⊗K∗))\X̂(Proposition 3.6)

= (L∗•K∗)\X̂

= [((L∗•K∗) \ X̂) ∧ ((L∗•K∗) \ X̂), ((L∗•K∗) \ X̂)]

= [((L∗ •K
∗) \ X̂) ∧ (((L∗ •K

∗)⊕ (L∗ •K
∗
)) \ X̂), (((L∗ •K∗)⊕

(L∗ •K
∗
)) \ X̂)]

So we are found K∗\X̂ � (L∗•K∗)\X̂. As claimed by an Inequality 4.18,

(L∗•K∗)\X̂ � X̂. As a result, K∗\X̂ � (L∗•K∗)\X̂ � X̂. So we are found
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K∗\X̂ � X̂. So that, X̂ � K∗\X̂ (because K∗ � E) then K∗\X̂ = X̂, i.e.

X̂ ∈ Im K∗.
The second step, we are shown X̂ ∈ Im ΛL∗ , i.e. X̂ = L∗�X̂ = L∗•X̂. From

an Inequality 4.18 is found X̂ � (L∗•K∗)⊗X̂ = L∗•(K∗⊗X̂) = L∗•X̂ (because

X̂ = K∗⊗X̂). in the other side, L∗ � E�. As a consequence of ΛL∗ an isoton

mapping, then L∗�X̂ � E��X̂. Therefore, As claimed by Theorem 2.4 we are

found X̂ � L∗•X̂. So that X̂ = L∗•X̂ = L∗�X̂.
The last step because (L∗•K∗)∗ � E, then (L∗•K∗)∗�G � E�G. According

to Theorem 2.3, we are found (L∗•K∗)∗\G � G. So X̂ � G

�

Theorema which is explained Hardouin [?], he given that S is just semiring. But,
when we proof, we need S complete idempotent semiring. Because that is Klenee Star
which is defined Proposisi 4.7 that must defined over infinite sum.

Proposition 4.18. Given S complete idempotent semiring, and K,L ∈ ISn×n,X ∈
ISn×m. If ∀X equation L∗•(K∗⊗X) = (L∗•K∗)⊗X hold, a mapping

P : ISn×m → ISn×m,X 7→ (L∗•K∗)\X

with

(L∗•K∗)∗\X = [((L∗•K
∗)∗\X)∧(((L∗•K

∗)⊕(L∗•K
∗
))∗\X), ((L∗•K

∗)⊕(L∗•K
∗
))∗\X]

is a projector in ImLK∗ ∩ Im ∧L∗ , officially,

P(X) = {
∨

Y|Y �IS X andY ∈ ImLK∗ ∩ Im ∧L∗}

Proof. Proposition 4.18 is aplication of Proposition 4.3. In practice its calculation,
from Proposition 4.10, we find

(L∗•K∗)∗\X = [((L∗•K∗)∗ \X) ∧ ((L∗•K∗)∗ \X, ((L∗•K∗)∗ \X)]

with according Proposition 4.12 and Proposition 4.7 are found

(L∗•K∗)∗ = (L∗ •K
∗)∗

and

(K∗•K∗)
∗

= ((L∗ •K∗)⊕ (L∗ •K
∗
))∗

�

5. Conclusion

(1) There is a the greatest solution have owned an inequality solution of K ⊗X �
X � L � X and X � G with matrix K,L which is element of the complete
idempotent semiring Sn×n dan X,G which is element of a complete idempotent
semiring Sn×m.
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(2) There is a sufficient condition for the projector have owned an inequality solu-
tion of K⊗X � X � L�X with matrix K,L which is element of the complete
idempotent semiring Sn×n dan X,G which is element of a complete idempo-
tent semiring. Futhermore, the projector is the greatest solution of inequality
K ⊗X � X � L�X.

(3) Based on previous research, the greatest solution to the inequality of K⊗X �
X � L�X and X � G can be applied to the matrix K,L which which is element
of the complete idempotent semiring of intervals ISn×n and X,G which which
is element of the complete idempotent semiring of intervals ISn×m.

(4) There are sufficient conditions for the projector to have an inequality solution
K ⊗ X � X � L � X and X � G with the matrix K,L which is element of
the complete idempotent semiring of intervals ISn×n and X,G which which
is element of the complete idempotent semiring of intervals ISn×m from the
results of previous studies.
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