ISSN: 2715-1891

SIFAT-SIFAT MORFISMA DI DALAM KATEGORI RUANG PENUTUP RUANG TOPOLOGIS YANG TERHUBUNG LINTASAN

(ON THE MORPHISMS OF THE CATEGORY OF PATH CONNECTED COVERING SPACES)

VALENTINO RISALI*, INDAH EMILIA WIJAYANTI

Abstrak. Untuk sebarang ruang topologis X dapat dibentuk Cov_X yaitu kategori ruang penutup X yang terhubung lintasan. Pada tulisan ini akan dibahas syarat perlu dan cukup eksistensi morfisma antara dua ruang penutup yang terhubung lintasan lokal. Untuk sebarang $x_0 \in X$ dan grup fundamental $G = \pi_1(X, x_0)$, dapat dibentuk kategori SetG, yaitu kategori semua himpunan yang dilengkapi aksi kanan oleh G. Selanjutnya dibentuk fungtor F dari Cov_X ke SetG. Dalam tulisan dibuktikan bahwa F bersifat fully faithful jika X terhubung lintasan dan terhubung lintasan lokal. Akibatnya untuk mengidentifikasi morfisma-morfisma antara dua obyek A dan B di Cov_X dapat dilakukan dengan cara melihat sifat morfisma-morfisma antara F(A) dan F(B).

 $\it Kata-kata~kunci:$ grup fundamental, ruang penutup, kategori ruang penutup, $\it fungtor~faithful.$

Abstract. For any topological space X, we can construct the category of path connected covering spaces of X, denoted by Cov_X . In this paper we study a sufficient and necesarry condition for the existence of morphism between two locally path connected covering spaces. For every $x_0 \in X$ and fundamental group $G = \pi_1(X, x_0)$, we can construct the category of sets with right action of G, denoted by SetG. Furthermore, we can define a functor F from Cov_X to SetG. We proof that the functor F is fully faithul if X is path connected and locally path connected. From this result, we can identify morphisms between A and B in Cov_X by using the properties of morphisms between F(A) and F(B).

 $\it Keywords$: fundamental group, covering space, category of covering spaces, faithful functor.

1. PENDAHULUAN

Untuk sebarang ruang topologis X dapat dibentuk grup fundamental relatif terhadap titik basis x_0 yang dinotasikan dengan $\pi_1(X,x_0)$ [2]. Grup fundamental merupakan alat penting untuk mempelajari sifat-sifat ruang topologis dan pada tulisan ini akan digunakan untuk membentuk suatu kategori. Lebih jauh, dari sebarang ruang topologis X dapat dibentuk suatu kategori dengan obyek-obyek berupa ruang-ruang penutup X yang dinotasikan dengan (E_1, p_1) yang terhubung lintasan. Adapun morfisma-morfismanya adalah homomorfisma penutup antar dua ruang penutup yang dilengkapi operasi komposisi fungsi biasa. Kategori tersebut dinotasikan dengan Cov_X [4]. Untuk sebarang $x_0 \in X$ dan grup fundamental $G = \pi_1(X, x_0)$, dapat dibentuk kategori SetG, yaitu kategori semua himpunan yang dilengkapi aksi kanan oleh G. Lebih jauh lagi di antara dua kategori yang terbentuk dapat dihubungkan dengan suatu fungtor F dari Cov_X ke SetG. Dasar-dasar pengertian kategori dan fungtor dirujuk dari pustaka [6].

Pada tulisan ini akan dibahas morfisma-morfisma pada Cov_X . Pertama akan diberikan syarat perlu dan cukup eksistensi morfisma dari (E_1, p_1) ke (E_2, p_2) dengan asumsi tambahan E_1 dan E_2 keduanya terhubung lintasan lokal. Alat yang digunakan adalah grup fundamental dari X dan sifat pada ruang penutup (Teorema 2.9). Dengan demikian permasalahan menentukan eksistensi morfisma pada Cov_X ekuivalen dengan menyelesaikan masalah aljabar.

Kemudian akan diidentifikasi morfisma-morfisma dari (E_1, p_1) ke (E_2, p_2) untuk kasus X terhubung lintasan dan terhubung lintasan lokal. Untuk menjawab permasalahan ini digunakan kategori SetG dengan $G = \pi_1(X, x_0)$. Selanjutnya dengan memanfaatkan ketunggalan pengangkatan suatu lintasan dapat didefinisikan fungtor kovarian F dari Cov_X ke SetG [5].

Berdasarkan pemikiran yang terinspirasi dari hasil di [1] pada tulisan ini dibuktikan bahwa fungtor F bersifat fully faithful dengan menambah syarat ruang topologis X terhubung lintasan dan terhubung lintasan lokal. Akibatnya terdapat korespondensi satu-satu antara $Mor((E_1,p_1),(E_2,p_2))$ dan $Mor(p_1^{-1}(x_0),p_2^{-1}(x_0))$ (Akibat 3.11). Dengan demikian disimpulkan bahwa untuk mengidentifikasi morfisma-morfisma dari (E_1,p_1) ke (E_2,p_2) dapat dilakukan dengan cara mengidentifikasi semua morfisma dari $p_1^{-1}(x_0)$ ke $p_2^{-1}(x_0)$. Tulisan ini juga memberikan contoh penggunaan hasil yang sudah dibuktikan untuk kasus di ruang topologis $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ yang dipandang sebagai subruang dari \mathbb{R}^2 yaitu pada Contoh 3.12 dan Contoh 3.13. Pada kedua contoh tersebut notasi (S^1,p_n) untuk setiap bilangan asli n menyatakan ruang penutup dari S^1 dengan pemetaan penutup p_n yang memiliki definisi $p_n(z) = z^n$ untuk setiap $z \in S^1$ dimana S^1 dipandang sebagai himpunan bagian \mathbb{C} . Untuk penjelasan lebih lanjut bisa diperhatikan pada Contoh 2.4. Dalam keseluruhan tulisan ini, notasi

 $f:(X,x)\longrightarrow (Y,y)$ menyatakan fmerupakan pemetaan dari X keY dengan f(x)=y.

2. RUANG PENUTUP SUATU RUANG TOPOLOGIS

Pada bagian ini akan dijelaskan tentang ruang penutup ruang topologis. Lintasan di ruang topologis X dengan titik awal x dan titik akhir y adalah pemetaan kontinu dari I = [0,1] ke X dengan f(0) = x dan f(1) = y. Khususnya jika f lintasan dengan $f(0) = x_0 = f(1)$, maka f disebut loop di X dengan titik basis x_0 . Himpunan semua lintasan di X dinotasikan dengan P(X) dan himpunan semua loop di X dengan titik basis x_0 yang dinotasikan dengan $\Omega(X, x_0)$. Jika $f, g \in P(X)$ dengan f(1) = g(0), didefinisikan

$$(f\star g)(t) = \left\{ \begin{array}{cc} f(2t) & , 0 \leq t \leq 1/2 \\ g(2t-1) & , 1/2 \leq t \leq 1 \end{array} \right.$$

yang merupakan lintasan di X dari f(0) ke g(1). Lintasan invers dari f dinotasikan $f^{-1}:I\longrightarrow X$ didefinisikan sebagai $f^{-1}(t)=f(1-t)$ untuk setiap $t\in I$.

Pada P(X) didefinisikan relasi \simeq_p , yaitu untuk setiap $f,g \in P(X), f \simeq_p g$ jika dan hanya jika f(1) = g(1), f(0) = g(0) dan terdapat pemetaan kontinu $F: I \times I \longrightarrow X$ sehingga F(t,0) = f(t), F(t,1) = g(t), F(0,s) = f(0), F(1,s) = f(1) untuk setiap $s,t \in I$. Selanjutnya F disebut homotopi antara f dan g dan ditulis $F: f \simeq_p g$. Dapat dibuktikan bahwa relasi \simeq_p merupakan relasi ekuivalensi [2]. Himpunan kelas-kelas ekuivalensi yang terbentuk dinotasikan dengan $\pi_1(X, x_0)$. Untuk setiap $[f], [g] \in \pi_1(X, x_0)$ didefinisikan $[f] \circ [g] = [f \star g]$. Himpunan kelas-kelas $(\pi_1(X, x_0), \circ)$ merupakan grup yang selanjutnya disebut grup fundamental dari X dengan titik basis x_0 . Untuk sebarang pemetaan kontinu $\phi: X \longrightarrow Y$ dengan $\phi(x_0) = y_0$ dapat didefinisikan homomorfisma grup $\phi_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ dengan $\phi_*([f]) = [p \circ f]$ untuk setiap $[f] \in \pi_1(X, x_0)$.

Ruang topologis X dikatakan terhubung lintasan jika untuk setiap $x,y \in X$ terdapat lintasan $f:I \longrightarrow X$ sehingga f(0)=x dan f(1)=y. Ruang topologis X dikatakan terhubung lintasan lokal jika untuk setiap $x \in X$ dan persekitaran terbuka U dari x terdapat persekitaran terbuka $V \subset U$ dari x yang terhubung lintasan. Pada bagian ini hanya diperhatikan ruang penutup yang bersifat terhubung lintasan dan terhubung lintasan lokal. Berikut akan diberikan pengertian ruang penutup dan sifat-sifat dasarnya.

Definisi 2.1 ([2]) Diketahui $p: E \longrightarrow X$ fungsi kontinu yang surjektif. Himpunan terbuka $U \subset X$ dikatakan tertutup rata oleh p (evenly covered by p) jika $p^{-1}(U) = \bigcup_{j \in J} S_j$ dengan S_j terbuka, $S_i \cap S_j = \emptyset$ untuk $i \neq j$ dan $p|_{S_j}: S_j \longrightarrow U$ merupakan homeomorfisma untuk setiap $j \in J$. Himpunan terbuka S_j disebut lembaran (sheet).

Definisi 2.2 ([2]) Pasangan (E, p) disebut ruang penutup (covering space) dari ruang topologis X jika:

- (1) $p: E \longrightarrow X$ kontinu dan surjektif;
- (2) untuk setiap $x \in X$ terdapat persekitaran terbuka U dari x yang tertutup rata oleh p.

Pemetaan p disebut pemetaan penutup (covering map).

Selanjutnya diberikan contoh ruang penutup ruang topologis.

Contoh 2.3 Diperhatikan $p: \mathbb{R} \longrightarrow S^1 = \{e^{i\theta} = \cos\theta + i\sin\theta \mid 0 \le \theta < 2\pi\}$ dengan

$$p(x) = (\cos 2\pi x, \sin 2\pi x).$$

Himpunan terbuka $U_1 = \{(x,y) \in S^1 : x > 0\}$ tertutup rata oleh p karena $p^{-1}(U_1) = \bigcup_{n \in \mathbb{Z}} (n - \frac{1}{4}, n + \frac{1}{4})$ dengan $\{(n - \frac{1}{4}, n + \frac{1}{4})\}_{n \in \mathbb{N}}$ saling asing dan $p \mid_{V_n} : V_n \longrightarrow U_1$ merupakan homeomorfisma. Secara analog, $U_2 = \{(x,y) \in S^1 : y > 0\}$, $U_3 = \{(x,y) \in S^1 : x < 0\}$ dan $U_4 = \{(x,y) \in S^1 : y < 0\}$ juga tertutup rata oleh p. Untuk sebarang $x \in S^1$ berlaku x anggota salah satu dari $U_i, i = 1, 2, 3, 4$. Jadi, (\mathbb{R}, p) ruang penutup dari S^1 .

Contoh 2.4 Diperhatikan S^1 yang dipandang sebagai himpunan bagian \mathbb{C} , yaitu

$$S^{1} = \{e^{i\theta} = \cos\theta + i\sin\theta \mid 0 \le \theta < 2\pi\}.$$

Untuk sebarang bilangan asli n, didefinisikan $p_n: S^1 \longrightarrow S^1$ dengan $p_n(z) = z^n$. Diperoleh p kontinu dan surjektif. Diperhatikan himpunan terbuka

$$U_1 = \{e^{i\theta} \mid 0 < \theta < \pi\}.$$

Diperoleh $p^{-1}(U_1) = \bigcup_{k=0}^{2n-1} V_n^k$ dengan

$$V_n^k = \{e^{i\phi} \in S^1 \mid x_k < \phi < x_k + \frac{\pi}{n}\}, x_k = \frac{k\pi}{2}, k = 0, 2, 4, ..., 2n - 2.$$

 $Akibatnya p_n|_{V_n^k}: V_n^k \longrightarrow U_1 \text{ homeomorfisma dan } U_1 \text{ tertutup rata oleh } p_n. \text{ Analog,}$

$$U_2 = \{(x, y) \in S^1 : x > 0\},$$

$$U_3 = \{(x, y) \in S^1 : x < 0\}, dan$$

$$U_4 = \{(x, y) \in S^1 : y < 0\}$$

juga tertutup rata oleh p_n . Untuk sebarang $x \in S^1$ berlaku x anggota salah satu dari U_i , i = 1, 2, 3, 4. Akibatnya (S^1, p_n) ruang penutup dari S^1 .

Berikut diberikan definisi pengangkatan pemetaan kontinu pada suatu ruang topologis.

Definisi 2.5 ([2]) Diberikan ruang-ruang topologis X, \tilde{X} dan Y serta pemetaan $p: \tilde{X} \longrightarrow X$. Misalkan $f: Y \longrightarrow X$ pemetaan kontinu. Pengangkatan f adalah pemetaan $\tilde{f}: Y \longrightarrow \tilde{X}$ dengan sifat $p \circ \tilde{f} = f$.

Selanjutnya diberikan beberapa hasil yang sudah dibahas dalam [2] dan akan digunakan dalam pembahasan selanjutnya.

Teorema 2.6 ([2]) Diketahui (E,p) ruang penutup X. Jika $\alpha: I \longrightarrow X$ merupakan lintasan dan $e \in E$ dengan $p(e) = \alpha(0)$, maka terdapat dengan tunggal lintasan $\tilde{\alpha}: I \longrightarrow E$ dengan $\tilde{\alpha}(0) = e$ sehingga $p \circ \tilde{\alpha} = \alpha$.

Teorema 2.7 ([2]) Misalkan (E,p) ruang penutup dari X dan $x_0, x_1 \in X$. Diberikan lintasan f dan g dari x_0 ke x_1 serta $\tilde{x}_0 \in p^{-1}(x_0)$. Jika \tilde{f} dan \tilde{g} adalah pengangkatan f dan g berturut-turut dan $F: f \simeq_p g$ serta $\tilde{f}(0) = \tilde{x}_0 = \tilde{g}(0)$, maka $\tilde{F}: \tilde{f} \simeq_p \tilde{g}$ dan $\tilde{f}(1) = \tilde{g}(1)$.

Teorema 2.8 ([2]) Diketahui (E,p) ruang penutup X, $x_0 \in X$ dan $e_0 \in p^{-1}(x_0)$. Jika f adalah loop dengan titik basis x_0 yang memiliki pengangkatan \tilde{f} dengan $\tilde{f}(0) = e_0$, maka $[f] \in p_*(\pi_1(E,e_0))$ jika dan hanya jika \tilde{f} loop di E dengan titik basis e_0 .

Berikut ini adalah syarat perlu dan cukup suatu pemetaan memiliki pengangkatan. Bukti diberikan untuk keperluan pembahasan selanjutnya.

Teorema 2.9 ([2]) Diketahui Y ruang topologis yang terhubung dan terhubung lintasan lokal dan $f:(Y,y_0) \longrightarrow (X,x_0)$ adalah fungsi kontinu. Jika (E,p) ruang penutup X dengan $p(\tilde{x}_0) = x_0$, maka terdapat dengan tunggal $\tilde{f}:(Y,y_0) \longrightarrow (E,e_0)$ pengangkatan dari f jika dan hanya jika $f_*(\pi_1(Y,y_0)) \subset p_*(\pi_1(E,e_0))$.

Bukti. Akan didefinisikan pemetaan $\tilde{f}: Y \longrightarrow \tilde{X}$. Misalkan $y \in Y$. Karena Y terhubung dan terhubung lintasan lokal, Y terhubung lintasan. Hal ini berarti terdapat lintasan $\alpha: I \longrightarrow Y$ dari y_0 ke y. Diperhatikan bahwa $f \circ \alpha: I \longrightarrow X$ merupakan lintasan dengan titik awal $f(u(0)) = x_0$. Berdasarkan Teorema 2.6, terdapat dengan tunggal $\tilde{\alpha}: I \longrightarrow \tilde{X}$ sehingga $p \circ \tilde{\alpha} = f \circ \alpha$ dan $\tilde{\alpha}(0) = \tilde{x}_0$. Didefinisikan $\tilde{f}: Y \longrightarrow \tilde{X}$ dengan $\tilde{f}(y) = \tilde{\alpha}(1)$. Selanjutnya dapat ditunjukkan \tilde{f} kontinu dan merupakan pengangkatan dari f.

3. FUNGTOR $F: Cov_X \longrightarrow SetG$

Pada bagian pertama akan dibentuk kategori dengan kelas obyek semua ruang penutup dari ruang topologis X beserta homomorfisma penutup (covering homomorphism) sebagai anggota kelas morfismanya.

Definisi 3.1 ([2]) Misalkan (E_1, p_1) dan (E_2, p_2) merupakan ruang penutup dari X. Homomorfisma penutup $f: (E_1, p_1) \longrightarrow (E_2, p_2)$ adalah pemetaan kontinu $f: E_1 \longrightarrow E_2$ dengan sifat $p_1 = p_2 \circ f$.

Lemma 3.2 Diberikan sebarang ruang topologis X. Dibentuk $obj(Cov_X)$ yaitu kelas ruang-ruang penutup dari X yang terhubung lintasan dan $Mor(Cov_X)$ yaitu kelas homomorfisma penutup antar dua ruang penutup dari X dan dilengkapi operasi komposisi fungsi biasa. Akibatnya Cov_X merupakan kategori dengan kelas obyek adalah $obj(Cov_X)$ dan kelas morfisma adalah $Mor(Cov_X)$.

Bukti. Diambil sebarang (E,p) yaitu ruang penutup X. Didefinisikan pemetaan kontinu $1_E: E \longrightarrow E$. Mengingat $p=p \circ 1_E$, disimpulkan 1_E merupakan homomorfisma penutup dan untuk sebarang $f \in Mor(X,Y)$ berlaku $1_E \circ f = f$. Diambil sebarang (E,p), (E',p'), (E",p") ruang-ruang penutup X dan $f \in Mor(E,E'), g \in Mor(E',E")$. Diperoleh $p=p' \circ f=p" \circ (g \circ f)$. Akibatnya $g \circ f \in Mor(E,E")$. Jadi, $\mathcal C$ merupakan kategori.

Berdasarkan Teorema 2.9 diperoleh syarat perlu dan cukup eksistensi morfisma antara dua ruang penutup sebagai berikut.

Teorema 3.3 Misalkan $x_0 \in X$ dan $(E_1, p_1), (E_2, p_2) \in Cov_X$. Jika E_1 dan E_2 keduanya terhubung lintasan lokal, maka terdapat morfisma $f: (E_1, p_1) \longrightarrow (E_2, p_2)$ jika dan hanya jika $p_{1*}(\pi_1(E_1, e_1)) \subset p_{2*}(\pi_1(E_2, e_2))$ untuk suatu $e_1 \in p_1^{-1}(x_0), e_2 \in p_2^{-1}(x_0)$.

Di pihak lain, untuk sebarang ruang topologis X dapat dibentuk kategori yang berbeda dengan pembentukan kategori Cov_X . Sebelumnya akan diberikan terlebh dahulu pengertian aksi suatu grup G pada himpunan X.

Definisi 3.4 Diketahui G merupakan grup dengan identitas e_G dan X himpunan tak kosong. Aksi kanan dari G pada X adalah pemetaan $\cdot: X \times G \longrightarrow X, \cdot (x,g) = x \cdot g$ yang memenuhi :

- (1) $x \cdot (gh) = (x \cdot g) \cdot h$
- (2) $x \cdot e_G = x$, untuk setiap $x \in X$ dan $g \in G$.

 $Himpunan\ tak\ kosong\ yang\ dilengkapi\ aksi\ kanan\ disebut\ G-set\ kanan.$

Definisi 3.5 Misalkan F_1 dan F_2 merupakan G-set kanan. Pemetaan

$$f: F_1 \longrightarrow F_2$$

disebut G-map jika f(xg) = f(x)g untuk setiap $x \in X$ dan $g \in G$.

Lemma 3.6 Untuk sebarang grup G, obj(SetG) menyatakan kelas himpunan-himpunan G-set kanan dan Mor(SetG) merupakan kelas G-map antar dua G-set dengan komposisi fungsi biasa. Akibatnya SetG merupakan kategori dengan kelas obyek obj(SetG) dan kelas morfisma Mor(SetG).

Bukti. Diambil sebarang $F \in obj(SetG)$. Misalkan $i: F \longrightarrow F$ adalah pemetaan identitas. Untuk sebarang $x \in F, g \in G$ berlaku i(xg) = xg = i(x)g dan $i \in Mor(F, F)$. Akibatnya i merupakan identitas obyek F. Diambil sebarang $f_1 \in Mor(F_1, F_2), f_2 \in Mor(F_2, F_3)$. Untuk sebarang $x \in F_1, g \in G$ berlaku

$$(f_2 \circ f_1)(xg) = f_2(f_1(xg))$$

$$= f_2(f_1(x)g)$$

$$= (f_2(f_1(x)))g$$

$$= (f_2 \circ f_1)(x)g.$$

Akibatnya $f_2 \circ f_1 \in Mor(F_1, F_3)$. Jadi, SetG merupakan kategori.

Diberikan ruang topologis X dan $x_0 \in X$. Dibentuk $G = \pi_1(X, x_0)$. Dari kedua kategori yang sudah terbentuk di atas, akan didefinisikan suatu fungtor F: $Cov_X \longrightarrow SetG$. Diambil sebarang $(E, p) \in obj(Cov_X)$, kemudian didefinisikan $F(E, p) := p^{-1}(x_0)$, untuk suatu x_0 di X. Akan ditunjukkan bahwa F(E, p) berada di SetG. Pertama didefinisikan dahulu aksi kanan dari G pada $p^{-1}(x_0)$.

Misalkan α merupakan loop dengan titik basis x_0 . Diberikan sebarang $e \in p^{-1}(x_0)$, artinya $p(e) = x_0 = \alpha(0)$. Berdasarkan Lemma 2.6, terdapat dengan tunggal lintasan $\tilde{\alpha}: I \longrightarrow E$ dengan $\tilde{\alpha}(0) = e$ sehingga $p \circ \tilde{\alpha} = \alpha$. Diperoleh $p(\tilde{\alpha}(1)) = \alpha(1) = x_0$ dan $\tilde{\alpha}(1) \in p^{-1}(x_0)$.

Lemma 3.7 Dengan menggunakan notasi yang sudah disebutkan sebelumnya, pengaitan $\cdot : p^{-1}(x_0) \times G \longrightarrow p^{-1}(x_0)$, dengan definisi $e \cdot [\alpha] := \tilde{\alpha}(1)$ dengan $\tilde{\alpha}$ adalah pengangkatan α yang memiliki titik awal e, merupakan aksi kanan.

- **Bukti.** (1) Akan ditunjukkan \cdot terdefinisi dengan baik. Diambil sebarang $e, e' \in p^{-1}(x_0)$ dan $[\alpha], [\beta] \in G$ dengan e = e' dan $[\alpha] = [\beta] \Leftrightarrow \alpha \simeq_p \beta$. Akan ditunjukkan bahwa $e \cdot [\alpha] = e \cdot [\beta]$. Misalkan $\tilde{\alpha}$ dan $\tilde{\beta}$ merupakan pengangkatan α dan β berturut-turut dengan titik awal e. Menurut Teorema 2.7 diperoleh $\tilde{\alpha}(1) = \tilde{\beta}(1)$ dan $e \cdot [\alpha] = e \cdot [\beta]$. Akibatnya \cdot terdefinisi dengan baik.
 - (2) Diambil sebarang $e \in p^{-1}(x_0)$ dan $[\alpha], [\beta] \in G$. Akan ditunjukkan bahwa $e \cdot ([\alpha] \circ [\beta]) = (e \cdot [\alpha]) \cdot [\beta]$. Diperhatikan bahwa $e \cdot ([\alpha] \circ [\beta]) = e \cdot [a \star b] = \tilde{d}(1)$ dengan \tilde{d} merupakan pengangkatan dari $a \star b$ dengan titik awal e.

Selanjutnya diperoleh juga

$$(e \cdot [\alpha]) \cdot [\beta] = \tilde{a}(1) \cdot [\beta]$$

$$= u \cdot [b] \qquad (u = \tilde{a}(1))$$

$$= \tilde{b}(1)$$

dengan \tilde{a}, \tilde{b} masing-masing pengangkatan dari a dan b secara berturutturut dengan $\tilde{a}(0) = e$ dan $\tilde{b}(0) = \tilde{a}(1)$. Lebih lanjut $\tilde{a}\star\tilde{b}$ terdefinisi dengan titik awal e. Selanjutnya didapat $p\circ\tilde{d}=a\star b=(p\circ\tilde{a})\star(p\circ\tilde{b})=p\circ(\tilde{a}\star\tilde{b})$. Akibatnya \tilde{d} dan $\tilde{a}\star\tilde{b}$ merupakan pengangkatan dari $a\star b$ yang memiliki titik awal e. Berdasarkan Teorema 2.7, $\tilde{d}(1)=(\tilde{a}\star\tilde{b})(1)=\tilde{b}(1)$. Jadi, $e\cdot([\alpha]\circ[\beta])=(e\cdot[\alpha])\cdot[\beta]$.

(3) Diambil sebarang $e \in p^{-1}(x_0)$. Misalkan [c] elemen identitas G. Akan ditunjukkan bahwa $e \cdot [c] = e$. Misalkan \tilde{c} adalah pengangkatan dari c dengan $\tilde{c}(0) = e$. Diperhatikan bahwa $[c] \in p_*(\pi_1(E,e))$. Menurut Teorema 2.8, \tilde{c} merupakan loop dengan titik basis e. Akibatnya $e \cdot [c] = \tilde{c}(1) = e$. Jadi, · merupakan aksi kanan.

Dengan demikian terbukti bahwa $F(E,p) := p^{-1}(x_0)$ merupakan obyek di SetG.

Selanjutnya diperhatikan morfisma $f:(E_1,p_1)\longrightarrow (E_2,p_2)$ di Cov_X , artinya f merupakan homomorfisma penutup dan $p_1=p_2\circ f$. Untuk setiap $e\in p_1^{-1}(x_0)$ berlaku $p_2(f(e))=p_1(e)=x_0$ dan $f(e)\in p_2^{-1}(x_0)$. Akibatnya f memetakan $p_1^{-1}(x_0)$ ke $p_2^{-1}(x_0)$. Didefinisikan $F(f)=f|_{p_1^{-1}(x_0)}$. Selanjutnya akan ditunjukkan bahwa $f|_{p_1^{-1}(x_0)}$ merupakan G-map.

Diambil sebarang $e \in p_1^{-1}(x_0)$ dan $[\alpha] \in G$. Akan ditunjukkan $f(e \cdot [\alpha]) = f(e) \cdot [\alpha]$. Berdasarkan Teorema 2.6 terdapat dengan tunggal $\tilde{\alpha}_1$ dan $\tilde{\alpha}_2$ pengangkatan dari α dengan $\tilde{\alpha}_1(0) = e$ dan $\tilde{\alpha}_2(0) = f(e)$. Karena f homomorfisma penutup, maka $p_2 \circ f \circ \tilde{\alpha}_1 = p_1 \circ \tilde{\alpha}_1$. Akibatnya $p_2 \circ (f \circ \tilde{\alpha}_1) = \alpha = p_2 \circ \tilde{\alpha}_2$ dan $f \circ \tilde{\alpha}_1$ dan α_2 pengangkatan dari α dengan $(f \circ \tilde{\alpha}_1)(0) = f(e) = \tilde{\alpha}_2(0)$. Diperoleh $f \circ \tilde{\alpha}_1 = \tilde{\alpha}_2$ dan

$$f(e \cdot [\alpha]) = (f \circ \tilde{\alpha}_1)(1) = \alpha_2(1) = f(e) \cdot [\alpha].$$

Jadi, F(f) merupakan G-map.

Lemma 3.8 Pemasangan $F: Cov_X \longrightarrow SetG$ merupakan fungtor kovarian.

Bukti. Diambil sebarang $(E,p) \in obj(Cov_X)$. Misalkan id adalah identitas dari (E,p) dan $F(id) = id|_{p^{-1}(x_0)}$. Untuk sebarang $e \in p^{-1}(x_0)$ berlaku $id|_{p^{-1}(x_0)}(e) = id(e) = e$. Akibatnya F(id) identitas dari $F(E,p) = p^{-1}(x_0)$. Diambil sebarang morfisma $f: (E_1, p_1) \longrightarrow (E_2, p_2)$ dan $g: (E_2, p_2) \longrightarrow (E_3, p_3)$. Akan ditunjukkan bahwa $F(g \circ f) = F(g) \circ F(f)$. Diperhatikan bahwa $F(g \circ f) = (g \circ f)|_{p_1^{-1}(x_0)}$,

$$\begin{split} F(f) &= f|_{p^{-1}(x_0)} \text{ dan } F(g) = g|_{p_2^{-1}(x_0)}. \text{ Untuk sebarang } e \in p_1^{-1}(x_0) \text{ diperoleh} \\ (g \circ f)|_{p_1^{-1}(x_0)}(e) &= (g \circ f)(e) = g(f(e)) = g((f|_{p_1^{-1}(x_0)})(e)) = (g|_{p_2^{-1}(x_0)} \circ f|_{p^{-1}(x_0)})(e). \\ \text{Akibatnya } F(g \circ f) &= F(g) \circ F(f). \text{ Jadi, } F \text{ fungtor kovarian.} \end{split}$$

Kemudian akan ditunjukkan bahwa fungtor kovarian F mempunyai sifat khusus yaitu fully faithful jika ruang topologis X bersifat khusus pula, dalam hal ini bersifat terhubung lintasan dan terhubung lintasan lokal.

Teorema 3.9 Jika ruang topologis X terhubung lintasan, maka fungtor

$$F: Cov_X \longrightarrow SetG$$

bersifat faithful.

Bukti. Diambil sebarang morfisma $f,g:(E,p)\longrightarrow (E',p')$ dengan F(f)=F(g), yaitu $f|_{p^{-1}(x_0)}=g|_{p^{-1}(x_0)}$. Hal ini berarti f(y)=g(y) untuk setiap $y\in p^{-1}(x_0)$. Akan ditunjukkan bahwa f(e)=g(e) untuk sebarang $e\in E$. Karena X terhubung lintasan, maka terdapat lintasan α dari p(e) ke x_0 . Berdasarkan Teorema 2.6 terdapat dengan tunggal lintasan $\tilde{\alpha}$ yang merupakan pengangkatan dari α dengan $\tilde{\alpha}(0)=e$. Misalkan α^{-1} lintasan invers dari α . Diperhatikan bahwa $f\circ\tilde{\alpha}$ lintasan dari f(e) ke $f(\tilde{\alpha}(1))$ dan $g\circ\tilde{\alpha}$ lintasan dari g(e) ke $g(\tilde{\alpha}(1))$. Diambil sebarang $t\in I$. Diperoleh

$$(p' \circ (f \circ \tilde{\alpha})^{-1})(t) = p' \circ (f \circ \tilde{\alpha}(1-t))$$
$$= p(\tilde{\alpha}(1-t))$$
$$= \alpha(1-t)$$
$$= \alpha^{-1}(t).$$

Secara analog diperoleh $(p' \circ (g \circ \tilde{\alpha})^{-1})(t) = \alpha^{-1}(t)$. Akibatnya $(f \circ \tilde{\alpha})^{-1}$ dan $(g \circ \tilde{\alpha})^{-1}$ dua pengangkatan dari α^{-1} yang memiliki titik awal $f(\tilde{\alpha}(1))$ dan $g(\tilde{\alpha}(1))$. Karena $p(\tilde{\alpha}(1)) = \alpha(1) = x_0$, $\tilde{\alpha}(1) \in p^{-1}(x_0)$ dan berlaku

$$(f \circ \tilde{\alpha})^{-1}(0) = (f \circ \tilde{\alpha})(1) = f(\tilde{\alpha}(1)) = g(\tilde{\alpha}(1)) = (g \circ \tilde{\alpha})(1) = (g \circ \tilde{\alpha})^{-1}(0).$$

Berdasarkan Teorema 2.6 diperoleh $(f \circ \tilde{\alpha})^{-1} = (g \circ \tilde{\alpha})^{-1}$ dan

$$f(e) = (f \circ \tilde{\alpha})(0)$$

$$= (f \circ \tilde{\alpha})^{-1}(1)$$

$$= (g \circ \tilde{\alpha})^{-1}(1)$$

$$= (g \circ \tilde{\alpha})(0)$$

$$= g(e).$$

Akibatnya f = g. Jadi terbukti F faithful.

Fakta bahwa fungtor F faithful jika X terhubung lintasan mengakibatkan pemetaan

$$T_{(E_1,p_1),(E_2,p_2)}: Mor((E_1,p_1),(E_2,p_2)) \longrightarrow Mor(p_1^{-1}(x_0),p_2^{-1}(x_0))$$

bersifat injektif untuk setiap (E_1,p_1) dan (E_2,p_2) .

Teorema 3.10 Jika ruang topologis X bersifat terhubung lintasan lokal, maka fungtor $F: Cov_X \longrightarrow SetG$ bersifat full.

Bukti. Misalkan $x_0 \in X$. Diambil sebarang $(E, p), (E', q) \in Cov_X$. Diberikan pemetaan $f: p^{-1}(x_0) \longrightarrow q^{-1}(x_0)$ yang merupakan G-map. Akan ditunjukkan terdapat pemetaan kontinu $g: E \longrightarrow E'$ sehingga $p = q \circ g$ dan F(g) = f. Mengingat f merupakan G-map, untuk setiap $[\alpha] \in G$ dan $e \in p^{-1}(x_0)$ berlaku

$$f(e[\alpha]) = f(e)[\alpha] \Leftrightarrow f(\tilde{\alpha}_e(1)) = \tilde{\alpha}_{f(e)}(1)$$

dimana $\tilde{\alpha}_e$ dan $\tilde{\alpha}_{f(e)}$ secara berturut-turut merupakan pengangkatan dari α dengan titik awal e dan f(e). Diberikan sebarang $e_0 \in p^{-1}(x_0)$. Namakan $e'_0 = f(e_0)$. Diambil sebarang $[\beta] \in \pi_1(E, e_0)$. Akan ditunjukkan bahwa $p_*([\beta]) \in q_*(\pi_1(E', e'_0))$. Karena β loop dengan titik basis e_0 , maka $p \circ \beta$ merupakan loop dengan titik basis x_0 . Karena p pemetaan penutup dari X, maka β merupakan pengangkatan dari $p \circ \beta$. Mengingat f merupakan G-map, diperoleh

$$f(e_0[p \circ \beta]) = f(e_0)[p \circ \beta] \Leftrightarrow e'_0 = f(e_0) = f(\beta(1)) = \delta(1),$$

dimana $\delta: I \longrightarrow E'$ pengangkatan $p \circ \beta$ dengan titik awal $f(e_0) = e'_0$. Akibatnya pengangkatan $p \circ \beta$ merupakan loop dengan titik basis e'_0 . Hal ini berarti $p_*([\beta]) \in q_*(\pi_1(E',e'_0))$ menurut Teorema 2.8. Berdasarkan Teorema 2.9, terdapat pemetaan kontinu $\tilde{p}: E \longrightarrow E'$ dengan sifat $p = q \circ \tilde{p}$. Tinggal ditunjukkan bahwa $\tilde{p}(e) = f(e)$ untuk setiap $e \in p^{-1}(x_0)$. Diberikan sebarang $e \in p^{-1}(x_0)$. Karena E terhubung lintasan, maka terdapat lintasan γ dari e_0 ke e. Didefinisikan $\alpha = p \circ \gamma$ yang merupakan loop di X dengan titik basis x_0 . Diperhatikan bahwa γ merupakan pengangkatan dari α dengan titik awal e_0 . Misalkan $\tilde{\alpha}_{e'_0}$ pengangkatan α dengan titik awal $f(e_0)$. Mengingat f adalah G-map, maka

$$\begin{split} f(e) &= f(\tilde{\alpha}_{e_0}(1)) \\ &= \tilde{\alpha}_{f(e_0)}(1) \\ &= \tilde{\alpha}_{e'_0}(1) \\ &= \tilde{p}(e) \quad \text{sesuai definisi} \quad \tilde{p} \end{split}$$

Akibatnya fungtor F full.

Secara mudah dapat disimpulkan akibat berikut.

Akibat 3.11 Jika ruang topologis X terhubung lintasan dan terhubung lintasan lokal, maka fungtor $F: Cov_X \longrightarrow SetG$ bersifat fully faithful.

Fakta bahwa fungtor F fully faithful jika X terhubung lintasan dan terhubung lintasan lokal mengakibatkan pemetaan

$$T_{(E_1,p_1),(E_2,p_2)}: Mor((E_1,p_1),(E_2,p_2)) \longrightarrow Mor(p_1^{-1}(x_0),p_2^{-1}(x_0))$$

bersifat bijektif untuk setiap (E_1,p_1) dan (E_2,p_2) .

Contoh 3.12 Perhatikan ruang topologis $X = S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ dan diambil $x_0 = (1,0)$. Berdasarkan hasil di [2] diperoleh $G = \pi_1(X,x_0) \cong (\mathbb{Z},+)$. Selanjutnya perhatikan ruang penutup (S^1,p_2) dari S^1 dan diperoleh $p_2^{-1}(x_0) = \{1,-1\}$. Didefinisikan $: p^{-1}(x_0) \times G \longrightarrow p^{-1}(x_0)$ dengan $e \cdot [\alpha] := \tilde{\alpha}_e(1)$. Akibatnya diperoleh

$$1 \cdot [f_{2k}] = 1, 1 \cdot [f_{2k+1}] = -1$$
$$-1 \cdot [f_{2k}] = -1, -1 \cdot [f_{2k+1}] = 1.$$

Diperhatikan pemetaan bijektif $h_1, h_2 : p^{-1}(x_0) \longrightarrow p^{-1}(x_0)$ dengan $h_1 = id$ dan $h_2(1) = -1$, $h_2(-1) = 1$. Jelas h_1 merupakan G-map. Adapun h_2 merupakan G-map karena

$$\begin{array}{lcl} h_2(1\cdot [f_{2k}]) & = & h_2(1) = -1 = -1\cdot [f_{2k}] = h_2(1)\cdot [f_{2k}] \\ h_2(-1\cdot [f_{2k}]) & = & h_2(-1) = 1 = 1\cdot [f_{2k}] = h_2(-1)\cdot [f_{2k}] \\ h_2(1\cdot [f_{2k+1}]) & = & h_2(-1) = 1 = -1\cdot [f_{2k+1}] = h_2(1)\cdot [f_{2k+1}] \\ h_2(-1\cdot [f_{2k+1}]) & = & h_2(1) = -1 = 1\cdot [f_{2k+1}] = h_2(-1)\cdot [f_{2k+1}]. \end{array}$$

Akibatnya semua pemetaan bijektif dari $p^{-1}(x_0)$ ke $p^{-1}(x_0)$ merupakan G-map. Dengan demikian ada 2 buah isomorfisma dari (S^1, p_2) ke dirinya sendiri.

Contoh 3.13 Perhatikan ruang topologis $X = S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ dan diambil $x_0 = (1,0)$. Berdasarkan hasil di [2] diperoleh $G = \pi_1(X,x_0) \cong (\mathbb{Z},+)$. Selanjutnya perhatikan ruang penutup S^1 yaitu (S^1,p_3) dan diperoleh $p_3^{-1}(x_0) = \{1,e^{i2\pi/3},e^{i4\pi/3}\}$. Didefinisikan $\cdot: p^{-1}(x_0) \times G \longrightarrow p^{-1}(x_0)$ dengan $e \cdot [\alpha] := \tilde{\alpha}_e(1)$. Namakan $a_1 = 1, a_2 = e^{i2\pi/3}, a_3 = e^{i4\pi/3}$. Selanjutnya didapat

$$\begin{array}{rcl} a_i \cdot [f_{3k}] & = & a_i, \forall i = 1, 2, 3 \\ a_1 \cdot [f_{3k+1}] & = & a_2, a_1 \cdot [f_{3k+2}] = a_3 \\ a_2 \cdot [f_{3k+1}] & = & a_3, a_2 \cdot [f_{3k+2}] = a_1 \\ a_3 \cdot [f_{3k+1}] & = & a_1, a_3 \cdot [f_{3k+2}] = a_2. \end{array}$$

Diperhatikan bahwa terdapat 6 pemetaan bijektif dari $p^{-1}(x_0)$ ke $p^{-1}(x_0)$ yaitu:

$$\begin{array}{rcl} \sigma_1 & = & id_{p^{-1}(x_0)} \\ \sigma_2 & = & (a_1)(a_2 & a_3) \\ \sigma_3 & = & (a_2)(a_1 & a_3) \\ \sigma_4 & = & (a_3)(a_1 & a_2) \end{array}$$

$$\sigma_5 = (a_1 \ a_3 \ a_2)$$

$$\sigma_6 = (a_1 \ a_2 \ a_3).$$

 $Jelas\ bahwa\ id_{p^{-1}(x_0)}\ merupakan\ G-map.\ Selanjutnya\ karena\ dipenuhi$

$$\sigma_2(a_3 \cdot [f_1]) = \sigma_2(a_1) = a_1 \neq a_3 = a_2 \cdot [f_1] = \sigma_2(a_3) \cdot [f_1]
\sigma_3(a_2 \cdot [f_1]) = \sigma_3(a_3) = a_1 \neq a_3 = a_2 \cdot [f_1] = \sigma_3(a_2) \cdot [f_1]
\sigma_4(a_3 \cdot [f_1]) = \sigma_4(a_1) = a_2 \neq a_1 = a_3 \cdot [f_1] = \sigma_4(a_3) \cdot [f_1],$$

disimpulkan bahwa $\sigma_2, \sigma_3, \sigma_4$ bukan G-map.

Pemetaan σ_5 merupakan G-map karena

$$\begin{array}{rcl} \sigma_5(a_i\cdot[f_{3k}]) &=& \sigma_5(a_i)=\sigma_5(a_i)\cdot[f_{3k}], \forall i=1,2,3\\ \sigma_5(a_1\cdot[f_{3k+1}]) &=& \sigma_5(a_2)=a_1=a_3\cdot[f_{3k+1}]=\sigma_5(a_1)\cdot[f_{3k+1}]\\ \sigma_5(a_2\cdot[f_{3k+1}]) &=& \sigma_5(a_3)=a_2=a_1\cdot[f_{3k+1}]=\sigma_5(a_2)\cdot[f_{3k+1}]\\ \sigma_5(a_3\cdot[f_{3k+1}]) &=& \sigma_5(a_1)=a_3=a_2\cdot[f_{3k+1}]=\sigma_5(a_3)\cdot[f_{3k+1}]\\ \sigma_5(a_1\cdot[f_{3k+2}]) &=& \sigma_5(a_3)=a_2=a_3\cdot[f_{3k+2}]=\sigma_5(a_1)\cdot[f_{3k+2}]\\ \sigma_5(a_2\cdot[f_{3k+2}]) &=& \sigma_5(a_1)=a_3=a_1\cdot[f_{3k+2}]=\sigma_5(a_2)\cdot[f_{3k+2}]\\ \sigma_5(a_3\cdot[f_{3k+2}]) &=& \sigma_5(a_2)=a_1=a_2\cdot[f_{3k+2}]=\sigma_5(a_3)\cdot[f_{3k+2}]. \end{array}$$

Pemetaan σ_6 merupakan G-map karena

$$\begin{array}{rcl} \sigma_{6}(a_{i}\cdot[f_{3k}]) & = & \sigma_{6}(a_{i}) = \sigma_{6}(a_{i})\cdot[f_{3k}], \forall i=1,2,3\\ \\ \sigma_{6}(a_{1}\cdot[f_{3k+1}]) & = & \sigma_{6}(a_{2}) = a_{3} = a_{2}\cdot[f_{3k+1}] = \sigma_{6}(a_{1})\cdot[f_{3k+1}]\\ \\ \sigma_{6}(a_{2}\cdot[f_{3k+1}]) & = & \sigma_{6}(a_{3}) = a_{1} = a_{3}\cdot[f_{3k+1}] = \sigma_{6}(a_{2})\cdot[f_{3k+1}]\\ \\ \sigma_{6}(a_{3}\cdot[f_{3k+1}]) & = & \sigma_{6}(a_{1}) = a_{2} = a_{1}\cdot[f_{3k+1}] = \sigma_{6}(a_{3})\cdot[f_{3k+1}]\\ \\ \sigma_{6}(a_{1}\cdot[f_{3k+2}]) & = & \sigma_{6}(a_{3}) = a_{1} = a_{2}\cdot[f_{3k+2}] = \sigma_{6}(a_{1})\cdot[f_{3k+2}]\\ \\ \sigma_{6}(a_{2}\cdot[f_{3k+2}]) & = & \sigma_{6}(a_{1}) = a_{2} = a_{3}\cdot[f_{3k+2}] = \sigma_{6}(a_{2})\cdot[f_{3k+2}]\\ \\ \sigma_{6}(a_{3}\cdot[f_{3k+2}]) & = & \sigma_{6}(a_{2}) = a_{3} = a_{1}\cdot[f_{3k+2}] = \sigma_{6}(a_{3})\cdot[f_{3k+2}]. \end{array}$$

Akibatnya pemetaan bijektif dari $p^{-1}(x_0)$ ke $p^{-1}(x_0)$ yang merupakan G-map adalah σ_1, σ_5 dan σ_6 . Dengan demikian ada 3 buah isomorfisma dari (S^1, p_3) ke dirinya sendiri.

Catatan 3.14 Ruang penutup (E_1, p_1) ekuivalen dengan (E_2, p_2) jika dan hanya jika $p_1^{-1}(x_0)$ dan $p_2^{-1}(x_0)$ isomorfis. Dengan demikian, jika $|p_1^{-1}(x_0)| \neq |p_2^{-1}(x_0)|$, maka (E_1, p_1) tidak ekuivalen dengan (E_2, p_2) . Artinya untuk melihat bahwa dua ruang penutup (E_1, p_1) dan (E_2, p_2) tidak ekuivalen cukup dengan melihat kardinalitas $p_1^{-1}(x_0)$ dan $p_2^{-1}(x_0)$. Sebagai contoh (S^1, p_n) dan (S^1, p_m) tidak ekuivalen karena $|p_n^{-1}(1, 0)| = n \neq m = |p_m^{-1}(1, 0)|$.

Catatan 3.15 Untuk menentukan semua morfisma dari (E_1, p_1) ke (E_2, p_2) dapat dilakukan dengan menentukan semua morfisma dari $p_1^{-1}(x_0)$ ke $p_2^{-1}(x_0)$. Misalkan (\tilde{X}, p) ruang penutup X. Notasi $Cov(\tilde{X}/X)_p$ menyatakan himpunan semua isomorfisma dari (\tilde{X}, p) ke dirinya sendiri yang merupakan grup terhadap operasi komposisi fungsi. Karena F fully faithful, berakibat F merefleksikan isomorfisma. Sehingga disimpulkan anggota (\tilde{X}, p) dapat ditentukan dengan mencari semua isomorfisma dari $p^{-1}(x_0)$ ke dirinya sendiri. Pada contoh 3.12 dan 3.13 diperoleh anggota $Cov(S^1/S^1)_{p_2}$ adalah identitas dan rotasi sebesar 180 derajat sedangkan anggota $Cov(S^1/S^1)_{p_3}$ adalah identitas, rotasi 120 derajat dan 240 derajat.

Catatan 3.16 Misalkan (\tilde{X}, p) ruang penutup X dengan $p(\tilde{x}_0) = x_0$. $Cov(\tilde{X}/X)_p$ dapat digunakan untuk menentukan apakah $p_*(\pi_1(\tilde{X}_0, \tilde{x}_0))$ subgrup normal dari $\pi_1(X, x_0)$ atau tidak, dengan terlebih dahulu mendefinisikan aksi kanan dari $Cov(\tilde{X}/X)_p$ pada $p^{-1}(x_0)$ dengan $y \cdot \sigma = \sigma(y)$ (lihat Teorema 10.18, [3]).

4. PENUTUP

Dari penjelasan sebelumnya diperoleh kesimpulan bahwa menentukan semua morfisma antara (E_1, p_1) dan (E_2, p_2) dapat dilakukan dengan menentukan semua morfisma antara $p_1^{-1}(x_0)$ dan $p_2^{-1}(x_0)$ dengan syarat X terhubung lintasan dan terhubung lintasan lokal.

REFERENSI

- [1] Brazas, J., Generalized Covering Spaces Theories, *Theory and Applications of Categories*, Vol 30 no 35 (2015), 1132-1162.
- [2] Munkres, J.R., 2000, Topology Second Edition, Prentice-Hall, USA.
- [3] Rotman, J.J., 1988, An Introduction to Algebraic Topology, Springer, New York.
- [4] Adhikari, M.R., 2016, Basic Algebraic Topology and its Application, Springer, India.
- [5] Weimar, J., 2008, Categories of Sets with A Group Action, Thesis, Mathematisch Instituut, Universiteit Leiden, Leiden.
- [6] Wisbauer, R., 1991, Foundations of Module and Ring Theory: A Handbook for Study and Research, Gordon and Breach Science Publihsers, Reading.

 ${\it Valentino \; Risali^* \; (Penulis \; Korespondensi)}$

Departemen Matematika, Fakultas MIPA, Universitas Gadjah Mada, Indonesia risaliv@gmail.com

Indah Emilia Wijayanti

Departemen Matematika Fakultas MIPA, Universitas Gadjah Mada, Indonesia ind_wijayanti@ugm.ac.id