Karakteristik dan Temperatur Nyala Api Pembakaran Biodiesel Berdasarkan Kadar Fatty Acid Methyl Esters

https://doi.org/10.22146/jmdt.95190

Christian Yuda Topayung(1), Shakti Nuryadin(2), Jayan Sentanuhady(3*)

(1) Universitas Gadjah Mada
(2) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Meningkatnya penerapan biodiesel yang bertujuan untuk suplementasi secara keseluruh atau sebagian bahan bakar untuk proses pembakaran dalam berbagai aplikasi industri memerlukan studi lebih lanjut mengenai karakteristik yang dihasilkan dari proses tersebut. Oleh karena itu, penelitian ini bertujuan untuk mengkaji karakteristik pembakaran berbagai macam bahan bakar campuran yang dipengaruhi oleh variasi persentase biodiesel FAME (fatty acid methyl esters) yang berasal dari minyak sawit sebagai penggantinya, yang dilakukan dengan menggunakan alat burner. Bahan bakar disemprotkan dengan nosel 60 derajat berkapasitas 5 galon per jam. Parameter yang diukur adalah panjang nyala api berdasarkan waktu, kecepatan rambat nyala api dengan percepatan pada posisi axial di depan nosel, dan profil temperatur nyala api. Temuan penelitian ini menunjukkan bahwa bahan bakar dengan persentase campuran FAME yang lebih rendah mengakibatkan proses pembakaran yang menghasilkan nyala api dengan nilai yang lebih tinggi pada parameter yang diamati, dan seiring bertambahnya persentase, nilainya terus menurun. Pengamatan ini dapat menghasilkan kesimpulan bahwa properties bahan bakar seperti densitas dan viskositas bervariasi atau dipengaruhi berdasarkan persentase  bahan bakar.

Keywords


Biodiesel; Pembakaran; Nyala Api; FAME; Minyak Kelapa Sawit

Full Text:

PDF


References

Abu-Hamdeh, N. H., Bantan, R. A. R., Alimoradi, A., & Pourhoseini, S. H. (2020). The effect of injection pressure on the thermal performance and emission characteristics of an oil burner operating on B20 palm oil biodiesel-diesel blend fuel. Fuel, 278(April), 118174. https://doi.org/10.1016/j.fuel.2020.118174

Alkabbashi, A. N., Alam, M. Z., Mirghani, M. E. S., & Al-Fusaiel, A. M. A. (2009). Biodiesel production from Crude Palm Oil by transesterification process. Journal of Applied Sciences, 9(17), 3166–3170. https://doi.org/10.3923/jas.2009.3166.3170

B, K. K., & Oza, N. P. (2013). A Review of Recent Research on Palm oil Biodiesel as Fuel for CI Engine. International Journal of Applied Research & Studies, II(I), 1–4.

Baroutian, S., Aroua, M. K., Raman, A. A. A., & Sulaiman, N. M. N. (2010). Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Processing Technology, 91(11), 1378–1385. https://doi.org/10.1016/j.fuproc.2010.05.009

Bhanu Teja, S. (2018). Experimental Investigation on the Performance, Emission and Combustion Characteristics of di Diesel Engine with Linseed Methyl Ester Along with Methanol Carburization. Materials Today: Proceedings, 5(2), 6470–6480. https://doi.org/10.1016/j.matpr.2017.12.260

Channapattana, S. V., Pawar, A. A., & Kamble, P. G. (2015). Effect of Injection Pressure on the Performance and Emission Characteristics of VCR engine using Honne Biodiesel as a Fuel. Materials Today: Proceedings, 2(4–5), 1316–1325. https://doi.org/10.1016/j.matpr.2015.07.049

Chen, C., Mira, D., Xing, Z., & Jiang, X. (2022). Thermophysical property prediction of biodiesel mixtures at extreme conditions using molecular dynamics simulation. Journal of Molecular Liquids, 367, 120423. https://doi.org/10.1016/j.molliq.2022.120423

Demirbas, A. (2008). Biodiesel: A realistic fuel alternative for diesel engines. In Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer London. https://doi.org/10.1007/978-1-84628-995-8

El-Kassaby, M., & Nemit-Allah, M. A. (2013). Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel. Alexandria Engineering Journal, 52(1), 1–11. https://doi.org/10.1016/j.aej.2012.11.007

Ganjehkaviri, A., Mohd Jaafar, M. N., Hosseini, S. E., & Musthafa, A. B. (2016). Performance evaluation of palm oil-based biodiesel combustion in an oil burner. Energies, 9(2), 1–10. https://doi.org/10.3390/en9020097

Gómez-Meyer, J. S., Gollahalli, S. R., Parthasarathy, R. N., & Quiroga, J. E. (2012). Laminar flame speed of soy and canola biofuels. CTyF - Ciencia, Tecnologia y Futuro, 4(5), 75–83. https://doi.org/10.29047/01225383.223

Han, D., Zhai, J., Duan, Y., Ju, D., Lin, H., & Huang, Z. (2017). Macroscopic and microscopic spray characteristics of fatty acid esters on a common rail injection system. Fuel, 203, 370–379. https://doi.org/10.1016/j.fuel.2017.04.098

Hasib, Z. M., Hossain, J., Biswas, S., & Islam, A. (2011). Bio-Diesel from Mustard Oil: A Renewable Alternative Fuel for Small Diesel Engines. Modern Mechanical Engineering, 01(02), 77–83. https://doi.org/10.4236/mme.2011.12010

Hosseini S B, Bashirnezhad K, Moghiman A R, Khazraii Y, & Nikoofal N. (2010). Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel. International Journal of Mechanical, Industrial and Aerospace Sciences, 4(12), 1372–1375.

Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002

Malik, M. S. A., Mohamad Shaiful, A. I., Mohd Ismail, M. S., Mohd Jaafar, M. N., & Sahar, A. M. (2017). Combustion and emission characteristics of coconut-based biodiesel in a liquid fuel burner. Energies, 10(4), 1–12. https://doi.org/10.3390/en10040458

McAndrew, A. (2016). A computational introduction to digital image processing. In Taylor & Francis Group, LLC.

Mehra, K. S., Pal, J., & Goel, V. (2023). A comprehensive review on the atomization and spray characteristics of renewable biofuels. Sustainable Energy Technologies and Assessments, 56(x), 103106. https://doi.org/10.1016/j.seta.2023.103106

Monirul, I. M., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Rashedul, H. K., Rashed, M. M., Imdadul, H. K., & Mosarof, M. H. (2015). A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes. RSC Advances, 5(105), 86631–86655. https://doi.org/10.1039/c5ra09555g

Muralidharan, K., Vasudevan, D., & Sheeba, K. N. (2011). Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine. Energy, 36(8), 5385–5393. https://doi.org/10.1016/j.energy.2011.06.050

Nanthagopal, K., Ashok, B., Garnepudi, R. S., Tarun, K. R., & Dhinesh, B. (2019). Investigation on diethyl ether as an additive with Calophyllum Inophyllum biodiesel for CI engine application. Energy Conversion and Management, 179(June 2018), 104–113. https://doi.org/10.1016/j.enconman.2018.10.064

Ogunkunle, O., & Ahmed, N. A. (2019). A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports, 5, 1560–1579. https://doi.org/10.1016/j.egyr.2019.10.028

Park, S. H., Kim, H. J., & Lee, C. S. (2011). Study on the dimethyl ether spray characteristics according to the diesel blending ratio and the variations in the ambient pressure, energizing duration, and fuel temperature. Energy and Fuels, 25(4), 1772–1780. https://doi.org/10.1021/ef101562b

Pourhoseini, S. H., & Asadi, R. (2017). An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners. Journal of Energy Resources Technology, Transactions of the ASME, 139(3), 1–5. https://doi.org/10.1115/1.4035023

Puigjaner, L., Pérez-Fortes, M., & Laínez-Aguirre, J. M. (2015). Towards a carbon-neutral energy sector: Opportunities and challenges of coordinated bioenergy supply Chains-A PSE approach. Energies, 8(6), 5613–5660. https://doi.org/10.3390/en8065613

Rodrigues, E., Mecânica, D. D. E., Universitário, C., Humberto, A., Castelo, D. A., & Química, D. D. E. (2013). Thermophysical Properties of Diesel / Biodiesel Blends. Cobem, 6577–6584.

Senthilkumar, S., Sivakumar, G., & Manoharan, S. (2015). Investigation of palm methyl-ester bio-diesel with additive on performance and emission characteristics of a diesel engine under 8-mode testing cycle. Alexandria Engineering Journal, 54(3), 423–428. https://doi.org/10.1016/j.aej.2015.03.019

Siraj, S. (2017). Effects of Thermal, Physical, and Chemical Properties of Biodiesel and Diesel Blends. American Journal of Mechanical and Industrial Engineering, 2(1), 24. https://doi.org/10.11648/j.ajmie.20170201.14

Soloiu, V., Weaver, J., Ochieng, H., Vlcek, B., Butts, C., & Jansons, M. (2013). Evaluation of peanut fatty acid methyl ester sprays, combustion, and emissions, for use in an indirect injection diesel engine. Energy and Fuels, 27(5), 2608–2618. https://doi.org/10.1021/ef302069d

Wang, Q., Hu, L., Tang, F., Zhang, X., & Delichatsios, M. (2013). Characterization and comparison of flame fluctuation range of a turbulent buoyant jet diffusion flame under reduced- and normal pressure atmosphere. Procedia Engineering, 62, 211–218. https://doi.org/10.1016/j.proeng.2013.08.057

Wirawan, S. S., Solikhah, M. D., Setiapraja, H., & Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189(PA), 113911. https://doi.org/10.1016/j.rser.2023.113911

Yoon, S. K., Ge, J. C., & Choi, N. J. (2019). Influence of fuel injection pressure on the emissions characteristics and engine performance in a CRDI diesel engine fueled with palm biodiesel blends. Energies, 12(20). https://doi.org/10.3390/en12203837



DOI: https://doi.org/10.22146/jmdt.95190

Article Metrics

Abstract views : 1402 | views : 1751

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.