Improving Grati 1.5 MWp Land-based Bifacial PV Production by Increasing Albedo with White Coral

https://doi.org/10.22146/jmdt.114907

Didik Purwanto(1*), Muhammad Hafizh Ridho(2), Erwin Setyawan(3)

(1) Department of Operation, PLN Indonesia Power Grati PGU
(2) PLN Indonesia Power Grati, Pasuruan, Indonesia
(3) PLN Indonesia Power Grati, Pasuruan, Indonesia
(*) Corresponding Author

Abstract


Grati Combined Cycle Power Plant (CCPP) operates a Land-based PV with 1.5 MWp bifacial solar panel modules. Currently, the solar irradiance has not been absorbed optimally yet because the bottom surface of the bifacial has not been utilized. Therefore, it requires a material which functions to reflect the irradiance of the sun so that the bottom surface of the bifacial PV can absorb the irradiance. In this case, the white coral is chosen to apply as a reflector, due to its high albedo value, available and low price. This research aims to see how large the improvement of the white coral in increasing the Grati Land-based PV production. This research is to compare it with soil albedo through a literature study, field survey, PVsyst simulation and the calculation of actual increase percentage in PV production. Based on the measurement of PV production, the usage of white coral as a reflector below the bifacial panel can increase the PV production amounts 3.8% higher than the soil albedo.

Keywords


Bifacial PV; albedo; white coral.

Full Text:

PDF


References

Ali, M., Ludiana, & Ramdani, Y. (2023). Optimasi sudut pemasangan panel surya bifasial di Indonesia dengan metode simulasi PVSyst. Riset dan Modelisasi Mekanika Energi (RMME), 6(1), 18–27. https://doi.org/10.30596/rmme.v6i1.12163

Cosgun, A. E., & Demir, H. (2024). Investigating the effect of albedo in simulation-based floating photovoltaic system: 1 MW bifacial floating photovoltaic system design. Energies, 17(4), Article 959. https://doi.org/10.3390/en17040959

Gul, M., Kotak, Y., Muneer, T., & Ivanova, S. (2018). Enhancement of albedo for solar energy gain with particular emphasis on overcast skies. Energies, 11(11), Article 2881. https://doi.org/10.3390/en11112881

Kenny, O. P., López-García, J., Menéndez, E. G., Haile, B., & Shaw, D. (2018, June). Characterizing bifacial modules in variable operating conditions. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (pp. 1210–1214). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/PVSC.2018.8547853

Marion, W. F. (2020). Albedo data sets for bifacial PV systems (Preprint No. NREL/CP-5K00-75924). Golden, CO: National Renewable Energy Laboratory. https://doi.org/10.1109/PVSC45281.2020.9300470

Nygren, A., & Sundström, E. (2021). Modelling bifacial photovoltaic systems. Sweden: Mälardalen University.

Peláez, S. A., Deline, C., MacAlpine, S. M., Marion, W. F., Stein, J. S., & Kostuk, R. K. (2019). Comparison of bifacial solar irradiance model predictions with field validation. IEEE Journal of Photovoltaics, 9(1), 82–88. https://doi.org/10.1109/JPHOTOV.2018.2877000

PLN Indonesia Power. (2021). PVsyst simulation report grid-connected system project – New simulation variant 1 landbase ground mount system power: 1507 kWp IP UP Grati. Pasuruan: PT PLN Indonesia Power UBP Grati.

Setyawan, E., Ridho, M. H., & Santoso, J. (2022). PLTS Landbase Grati POMU sebagai solusi menurunkan biaya pemakaian sendiri pembangkit dan mendukung program PROPER. Jakarta: PT PLN Indonesia Power.

Türkdoğru, E., & Kutay, M. (2022). Analysis of albedo effect in a 30-kW bifacial PV system with different ground surfaces using PVSYST software. Journal of Energy Systems, 6(4), 543–559. https://doi.org/10.30521/jes.1105348.



DOI: https://doi.org/10.22146/jmdt.114907

Article Metrics

Abstract views : 51 | views : 5

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.