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Abstract 
In realizing efficient energy use, the Government of Indonesia has issued a National Energy Policy in Government 
Regulation (Peraturan Pemerintah) No. 70 of 2009 concerning Energy Conservation, PT PLN Indonesia Power 
Priok Unit has carried out efficient operational activities. Therefore, to support the company's sustainability and 
operational performance, especially in terms of efficiency and operational activities, it is necessary to evaluate the 
process of energy use. The Combine Cycle Power Plant (CCPP) has several operating configurations according to 
the gas turbine, heat recovery steam generator (HRSG), and steam turbine amount. CCPP Priok Blok 3 operates 
full-block 2-2-1 or half-block 1-1-1, which means one gas turbine, HRSG, and steam turbine. This configuration 
of operation impacts the use of energy, water, and chemicals. For this reason, this project aims to model the use 
of energy, water, and chemicals using linear regression to determine which operating configurations are highly 
effective in using energy, water, and chemicals. The result of this linear regression modeling is that at the peak 
load, operation GT2 (gas turbine 2) is more energy efficient, 1.93% more efficient than GT1, than GT1 (gas turbine 
1). At the minimum load, GT1 is 9.36% more energy efficient than GT2. At the same time, the water consumption 
of GT2 is 35.01% more efficient than that of GT1. 
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Abstrak 
Untuk mendukung penggunaan energi yang efisien, Pemerintah Indonesia telah menerbitkan Kebijakan Energi 
Nasional dalam Peraturan Pemerintah No. 70 tahun 2009 tentang Konservasi Energi. Unit PT PLN Indonesia 
Power Priok telah melakukan kegiatan operasional yang efisien. Oleh karena itu, guna mendukung keberlanjutan 
perusahaan dan kinerja operasionalnya, terutama dalam hal efisiensi dan kegiatan operasional, diperlukan evaluasi 
terhadap proses penggunaan energi. Combine Cycle Power Plant (CCPP) memiliki beberapa konfigurasi operasi sesuai 
dengan jumlah turbin gas, heat recovery steam generator (HRSG), dan turbin uap. CCPP Priok Blok 3 beroperasi dengan 
konfigurasi full-block 2-2-1 atau half-block 1-1-1, yang berarti satu turbin gas, HRSG, dan turbin uap. Konfigurasi 
operasi ini berdampak pada penggunaan energi, air, dan bahan kimia. Oleh karena itu, proyek ini bertujuan untuk 
memodelkan penggunaan energi, air, dan bahan kimia menggunakan regresi linear untuk menentukan konfigurasi 
operasi mana yang sangat efektif dalam penggunaan energi, air, dan bahan kimia. Hasil dari pemodelan regresi 
linear ini menunjukkan bahwa pada beban puncak, operasi gas turbine 2 (GT2) lebih efisien secara energi, 1,93% 
lebih efisien daripada gas turbine 1 (GT1). Pada beban minimum, GT1 lebih efisien secara energi 9,36% 
dibandingkan dengan GT2. Pada saat yang sama, konsumsi air GT2 35,01% lebih efisien dibandingkan dengan 
GT1. 
 
Kata kunci : pemodelan, energi, bahan kimia, air 

 
  

 
1 Artikel ini dipresentasikan dalam Science Technology and Management Meetup (STEM MEET UP) 2023, PT. PLN Indonesia 
Power, 21-23 November 2023 di Batam, Kepulauan Riau. 
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1. INTRODUCTION 

PLN Indonesia Power, as a subsidiary of PLN, has a combined cycle Power Plant with an installed power of 
2723 megawatts in Tanjung Priok Jakarta, Indonesia. Priok Combine Cycle Power Plant has four blocks, one of 
which is a 740 MW (Melky, 2022). Using as little energy, water, and chemical consumption as possible in the energy 
industry is the goal of the world's industry. The relationship between energy use, water consumption, and chemical 
consumption has received special attention from researchers and policymakers (Li et al., 2022; Ali, 2020). The 
primary fuel for the power plant is natural gas obtained from the Floating Storage & Regasification Unit (FSRU) 
owned by PT Nusantara Regas and from PT Perusahaan Gas Negara (PGN). The fuel will be used in the gas 
turbine to produce electricity. Then for the steam cycle, the plant requires pure water taken directly from the 
Kalijapat River. The desalination plant will remove the salt content in the water, and then the water treatment plant 
will remove the mineral content and become make-up water (Wang, 2019). Water is essential for power plants 
because it is the primary raw material in making steam for the operation of the steam turbine. Water quality in 
power plant is the main factor of equipment reliability (Erlangga et al., 2017). Standard water quality can ensure 
performance of equipment and minimize equipment damage, especially from corrosion make-up water used as a 
working medium for steam turbines has several requirements: a maximum conductivity of 0.5 µs/cm, water pH 
6.5-7.5, and a silica (SiO2) content of not more than 10 ppb (Pan and Xu, 2022). 

In realizing efficient energy use, the Government of Indonesia has issued a National Energy Policy in 
Government Regulation (Peraturan Pemerintah) No. 5 of 2006, Energy Law No. 30 of 2007, and Government 
Regulation No. 70 of 2009 concerning Energy Conservation. Based on company policies and commitments as well 
as to support and fulfill government policies, PT PLN Indonesia Power Priok Power Generation Unit has carried 
out efficient operational activities. Therefore, to support the company's sustainability and operational performance, 
especially in terms of efficiency and operational activities, it is necessary to evaluate the process of energy use. 

The power plant operation requires detailed calculations regarding energy, water, and chemicals for evaluation 
and planning in the next operation. There are many methods for evaluating the operation of a power plant. An 
example is simulating generator components to become a new cycle based on work principles to optimize the 
objective function (Mehrpanahi et al., 2019). Other research also analyzed the performance of the 740 MW 
combined cycle power plant on configuration operating and loading using heat rate gap analysis, which yielded 
that the 1-1-1 configuration operating is more suitable for middle to lower loads between 130-350 MW, while the 
2- 2-1 operating pattern is more suitable for medium to upper loads between 350-750 MW (Fahlevy et al., 2019). 
On the other hand, the regression method has also become popular in several studies to carry out analyses between 
variables. The relationship between the variables can be positive or negative, linear or non-linear in regression 
(Foong et al., 2018). Meanwhile, research using the linear regression method clearly states that estimates of 
additional power and electrical energy to meet customer needs in the future can be estimated using this method 
(Mawartika and Kesuma, 2022; Syafruddin et al., 2014). Outside the technical discussion, to predict the number of 
sales (Indarwati et al., 2019; Najla and Fitrianah, 2019; Herwanto et al., 2019) and cases of disease spread 
(Kurniawan and Kokanda, 2021), we can use the linear regression method. 

The linear regression method in power plants obtains power plant performance at 7.35 MW geothermal plants. 
Consequently, the regression linear method can estimate the performance of a geothermal power plant and find 
the degradation of plant performance of a geothermal power plant (Karadas et al., 2015). This research begins by 
collecting historical data on the power plant in energy, water, and chemicals use when operating on a half-block 1-
1-1 configuration (1 gas turbine - 1 heat recovery steam generator - 1 steam turbine) and full- block 2-2-1 (2 gas 
turbine - 2 heat recovery steam generator - 1 steam turbine). By using the linear regression method, the basis for 
many analyses (Hoffman, 2018), the data become a model to conclude the most efficient use of energy, water, and 
chemicals and create a baseline for evaluating the recommendations. 

 

2. BASIC PRINCIPLE AND REGRESSION LINIER MODELING 

A. Basic Principles of Combine Cycled Power Plant 

A combined-cycle power plant is an electrical power plant in which a gas turbine and a steam turbine are used 
in combination to achieve greater efficiency than would be possible independently. A combined cycle has an 
efficiency of 55%, which is greater than the efficiency of a steam turbine power plant, which is about 35%. (Breeze, 
2016). This means that a significant amount of the latent energy of the fuel ends up being wasted. Much of this 
wasted energy ends up as thermal energy in the hot exhaust gases from the combustion process. There are many 
different configurations for CCPP, but typically each gas turbine has its own associated HRSG, and multiple HRSG 
supply steam to one or more steam turbines. For example, two gas turbines, two HRSG, and one steam turbine 
operated. 
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Figure 1. Schematic of a combined cycle power plant. 

 
LNG (liquified natural gas) as fuel is contacted with compressed air in the combusting chamber to produce 

pressurized hot gas for rotating gas turbines. Flue gas from gas turbines is used as fuel to produce steam at the 
HRSG (heat recovery steam generator). HRSG is a heat exchanger called a boiler. It creates steam for the steam 
turbine by passing the hot exhaust gas flow from a gas turbine or combustion engine through banks of heat 
exchanger tubes. The HRSG produces superheated steam that rotates the HP (high pressure) steam turbine, and 
the HRSG then reheats the steam to rotate the LP (low pressure) steam turbine. The steam is converted to a liquid 
phase as water in the condenser. Furthermore, it is pumped to the HRSG to generate continuous steam. The 
system is called closed-loop. 

Steam is continuously needed in the CCPP cycle, so sufficient and appropriate water is needed. The schematic 
of a combined cycle power plant is shown in Figure 1. Water is obtained from the purification process at the 
desalination plant and water treatment plant. Then, the water will be collected in the tank. Due to the continuous 
use of water, it is necessary to optimize the use of water. Besides pure water producing steam, seawater cools the 
condenser, heat exchanger, and machines in CCPP. Using seawater in the condenser will undoubtedly result in a 
water-scale buildup over time (Muhammad and Yulianto, 2023). The use of chemicals is necessary to maintain 
water quality in the steam turbine system and cooling system so that they do not experience system damage. 

Measurement is needed to represent the plant's performance in operating the Combine Cycle Power Plant. 
One of these measurements uses heat rate. Heat rate is a measure of power plant efficiency (Equations 1 and 2), 
defined as thermal input divided by thermal content of output; a lower heat rate correlates with a higher efficiency 
power plant (Grubert, 2020). 
 

𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒 =
𝐻𝑒𝑎𝑡 𝐼𝑛𝑝𝑢𝑡 (𝑘𝑐𝑎𝑙)

𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ)
   (1) 

 

𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒 =
 860 𝑘𝑐𝑎𝑙 𝑋 100%

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)
    (2) 

 
 

B. Regression Linear 

Linear regression is one of the methods used to forecast quality and quantity characteristics. The linear 
regression method typically uses two parameters with linear relationships. In regression modeling, there are two 
kinds of variables: dependent variables (a variable that is influenced by or whose value depends on other variables) 
and independent variables (a variable that is suspected to affect the dependent variable) (Permai and Tanty, 2018). 
Regression analysis serves the major purposes of description, control, and prediction. Linear regression can be 
calculated using Equations (3) to (5): 
 

𝒶 =
(∑ 𝑦)(∑ 𝑥2)−(∑ 𝑥)(∑ 𝑥𝑦)

𝑛(∑ 𝑥2)−(∑ 𝑥)2     (3) 

 

𝑏 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

𝑛(∑ 𝑥2)−(∑ 𝑥)2      (4) 

 

𝑦 =  𝑎 +  𝑏. 𝑥      (5) 
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On the other hand, different prediction models have used sensitivity analysis and other data processing and 
variable selection methods to make their predictions more accurate. Finding the coefficient (R2), mean absolute 
deviation (MAD), mean squared error (MSE), root mean square error (RMSE), and mean absolute percentage 
error (MAPE) (M. S. Manzar et al., 2022) are some ways to measure the performance of a model. The determination 
coefficient (R2) can be calculated using Equation (6): 
 

𝑅2 = 1
Σ𝑖=1

𝑁 (𝑥−𝑦)2

Σ𝑖=1
𝑁 (𝑥−𝑥)2     (6) 

 
For a particular endogenous construct to be considered adequate, R2 values must be equal to or greater than 

0.10 (R.F. Falk, 1992). However, other references suggested that R2 values for endogenous latent variables are 
assessed as follows: 0.26 is substantial, 0.13 is moderate, and 0.02 is weak (J. Cohen, 1988). If the R2 is in the range 
0–0.25, the regression model is not significant. If the R2 is in the range of 0.25–0.64, the regression model should 
be interpreted with caution. If the R2 is in the range of 0.64–1, the regression model is strongly significant [9]. 

MAD, or mean absolute deviation, measures the prediction accuracy by averaging the absolute value of each 
error. It is particularly helpful when measuring prediction errors that have the same unit. The lower value of MAD 
indicates higher accuracy (I. Veza et al., 2021). MAD can be calculated using Equation (7): 

 

MAD = 1
N
Σ

i=1

N |𝑥 − 𝑦|    (7) 

 
MSE, or mean square error, is the average of the square of the difference between the real and predicted 

values. It is used to determine how close the predictions are to actual values. It is sensitive to outliers and punishes 
larger errors more (I. Veza et al., 2021). The value of MSE close to zero indicates forecasting results appropriate to 
actual data. MSE can be calculated using Equation (8): 
 

MSE = 1
N
Σ

i=1

N (𝑥 − 𝑦)
2
    (8) 

 
RMSE, or root mean square error, is simply the square root of the mean square error (MSE), where RMSE 

can be calculated using Equation (9): 
 

RMSE = √Σi=1
N (x−y)2

N
    (9) 

 
MAPE, or mean absolute percentage error, is one of the most extensively used measures for checking 

prediction accuracy. It is scale-independent and can be used to compare series on different scales (I. Veza et al., 
2021). The prediction results are good if the MAPE value is less than 10% [13]. MAPE can be calculated using 
Equation (10): 
 

MAPE = {
100

N
[Σi=1

N |
x−y

x
|]} %   (10) 

 

C. Data Reprocessing and Modeling 

In analyzing large amounts of data, data preprocessing is a method to prepare data. Data preprocessing can be 
very challenging, given the complexity and relatively poor data quality. Data preprocessing is an indispensable step 
in knowledge discovery and research from operational data (Fan et al., 2021). Following are the steps of data 
reprocessing: 

• Data cleaning: The first step when preprocessing data is data cleaning. That is, the raw data needs to be re- 
selected. Then, delete or eliminate incomplete, irrelevant, inaccurate or outlier data. By doing this stage, it will 
be clear when analyzing the data (H. Henderi dan R.L. Wanda, 2017). 

• Data reduction: On time series data, usually the data is obtained within a very tight period; for that, data 
reduction is needed to facilitate the analysis process. 

• Data scaling: Data scaling is often needed to ensure the validity of predictive modeling, especially when the 
input variables have different scales. 
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• Data transformation: The following process is data transformation. As explained above, data will be taken 
from various sources with different formats. All data must be equated to simplify the analysis process (Ribeiro 
et al., 2015). 

• Data partitioning: Data partitioning aims to divide the whole data into several groups for in-depth analysis. 
 
After doing data reprocessing, data modeling is the process of producing descriptive diagrams of the 

relationship between the various types of information to be displayed. 
There are three types of data modeling based on the model level, as follows: 

• Conceptual : These models are typically created by business and data architecture stakeholders. It aims to 
extend, organize, and define business concepts and rules. 

• Logical : Architects and business analysts create these models. The goal is to develop a regulatory technical 
map and data structure. 

• Physical : Developers usually make this model. The goal is the actual implementation of the database 
 

 

3. METHODOLOGY 

This research uses primary data obtained from an Accessory Station (ACS), which is a piece of equipment that 
saves and manages various equipment data over the long term and interfaces with printers and other peripherals. 
As with the OPS, the ACS runs on Windows. Data was collected from 10 parameters. The samples used are 12,232 
samples from June 2022 until June 2023. The data will be processed in stages according to the vertical bending 
process workflow in Figure 2. 
 

 

Figure 2. Schematic of a creating data modeling 

 
After getting the original data, the first step is data cleaning. Permissible values for heatrate in CCPP are above 

3440 kcal/kWh, or 25% efficiency. Values that do not match NaN (Not a Number) with the criteria will be deleted. 
The data generated by ACS is in the form of a time series with a span of 1 minute for one year, so the data can be 
reduced according to the loading pattern that occurs. The data will be divided into three main subjects, namely 
data on GT1, GT2, and block load. 

Based on energy efficiency, water, and chemical consumption cases, this research uses nine independent 
variables (X1, X2, X3, X4, X5, X6, X7, X8, and X9) and one dependent variable (Y1). Here are the variables: 

X1 = Load Gas Turbine 1 
X2 = Load Gas Turbine 2 
X3 = Block Load (2-2-1) 
X4 = Water Consumption GT 1 
X5 = Water Consumption GT 2 
X6 = Water Consumption (2-2-1) 
X7 = Chemical Consumption GT 1 
X8 = Chemical Consumption GT 2 
X9 = Chemical Consumption (2-2-1) 
Y1 = Gross Heat Rate 
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Table 1. Models code from variables 

Independent Dependent Models Code 

Load Gas Turbine 1 Gross Heat Rate B1 
Load Gas Turbine 2 Gross Heat Rate B2 
Block Load (2-2-1) Gross Heat Rate B3 
Water Consumption GT 1 Gross Heat Rate W1 
Water Consumption GT 2 Gross Heat Rate W2 
Water Consumption (2-2-1) Gross Heat Rate W3 
Chemical Consumption GT 1 Gross Heat Rate C1 
Chemical Consumption GT 2 Gross Heat Rate C2 
Chemical Consumption (2-2-1) Gross Heat Rate C3 

 
This research will divide nine models from the variables above, as shown in Table 1 that will be analyzed using 

linear regression. The result is that by knowing the equation, it will be known under what conditions the generator 
operating configuration will have the most efficient energy and optimal use of water and chemistry. Furthermore, 
the data is processed using linear regression modeling. Results from the models were shown to obtain the best 
model using RMSE, MAD, MSE, and MAPE criteria. The linear regression method was chosen because the 
analysis is easy, fast, and can represent the data. This method can also be used as an early classification of existing 
data to be used as material for rapid evaluation. After doing linear regression modeling on the variables, by looking 
at the value of R2, the linear equation will be interpreted according to the operational activities of the plant, and 
the linear equation can be used as a baseline for calculating the difference in energy use, water use, and chemical 
use. If the value of R2 does not meet the requirements, then the linear regression will be interpreted as relevant 
only to the operational activities of the plant. Table 2. shows the range of data for each variable (min, max, mean, 
and standard deviation). 
 

Table 2. Variable range 

Measured Variable June 2022 – June 2023 

Group Variables Unit For The total 12,232 Input 
   Min Max Mean Std Deviation 

Independent Load Gas Turbine 1 MW 177.81 342.46 231.20 34.70 
 Load Gas Turbine 2 MW 184.17 338.66 237.85 40.77 
 Block Load (2-2-1) MW 259.52 692.01 467.23 80.81 
 Water Consumption GT 1 M3 100 1118.3 424.6 224.39 

 Water Consumption GT 2 M3 119.8 1045.53 498.88 218.68 

 Water Consumption (2-2-1) M3 125.2 1337.9 524.81 246.94 

 Chemical Consumption GT 1 kg 2.74 20.76 11.81 4.09 
 Chemical Consumption GT 2 kg 3 14.98 7.79 2.65 
 Chemical Consumption (2-2-1) kg 3.72 30 10.73 6.06 
Dependent Gross Heat Rate kcal/kWh 1327.59 2426.29 1703.38 81.27 

 

4. RESULT AND DISCUSSION 

In this research, linear models were built, tested, and compared using all independent variables. The data was 
processed using a standard program for data analysis in Microsoft Excel. The dependent variable was the gross 
heat rate. Then the independent variables load gas turbine 1, load gas turbine 2, block load (2-2-1), water 
consumption GT1, water consumption GT2, water consumption (2-2-1), chemical consumption GT1, chemical 
consumption GT2, and chemical consumption (2-2-1) represented energy, water consumption, and chemical 
consumption, which was a controlled variable. The variables were analyzed from June 2022 to June 2023. The 
scatter plots of the models are shown in Figure 3 and described in Table 3. 
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Figure 3. Plots of the models. Gross plant Heat rate Vs Load gas Turbine 1 (B1), Gross Plant Heat rate VS Load Gas Turbine 
2 (B2), Gross Plant Heat rate VS Block Load (2-2-1) (B3), Gross Plant Heat rate VS Water Consumption Gas Turbine 1 (W1), 
Gross Plant Heat rate VS Water Consumption Gas Turbine 2 (W2), Gross Plant Heat rate VS Water Consumption Block 
Load (2-2-1) (W3), Gross Plant Heat rate VS Chemical Consumption Gas Turbine 1 (C1), Gross Plant Heat rate VS Chemical 
Consumption Gas Turbine 2 (C2), and Gross Plant Heat rate VS Chemical Consumption Block Load (2-2-1) (C3) 

 

Table 3. Regression linnier equations and criterias model 

MODELS EQUATIONS R2 
CRITERIA 

RMSE MAD MSE MAPE (%) 

B1 y = -0.8993x + 1891.1 0.802 15.50 13.02 240.38 0.77 
B2 y = -2.0753x + 2265.1 0.8223 39.34 32.69 1547.13 1.85 
B3 y = -0.2762x + 1771.3 0.7126 14.17 11.08 200.86 0.77 
W1 y = 0.5195x + 1537.4 0.716 73.26 61.22 5341.23 3.51 
W2 y = 0.4552x + 1598.8 0.713 63.05 49.74 3956.83 2.71 
W3 y = 0.5783 + 1445.2 0.743 83.15 63.75 6877.40 3.63 
C1 y = -4.2889x + 1831.2 0.0159 138.17 89.50 18978.23 4.98 
C2 y = -6.4396x + 1815.8 0.0418 81.72 61.09 6600.98 3.47 
C3 y = -4.3619x +1832.4 0.0311 147.70 105.25 21642.50 5.66 

 
Table. 3 shows that the R2 values that meet the requirements above the strong R2 of 0.64 (N.S.Foong et 

al., 2018) are the B1, B2, B3, W1, W2, and W3 models (energy consumption and water consumption), while the 
C1, C2, and C3 (chemical consumption) models are categorized as weak data based on the R2 value. For this reason, 
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the model with a substantial R2 will be used as a baseline to determine the most efficient use of energy and water. 
Figure 4. shows that three models have excellent R2 values, so they can be used as baselines to measure the 
performance of each model. Half-block loads, namely models B1 and B2, have loads with the same performance 
(representation of heat rate) at loads of around 218–222MW. Nevertheless, after contact, there is a difference in 
performance at peak loads in the range of 344 MW. 
 

 

Figure 4. Energy baseline comparassion 

Model B1 has a heat rate value of 1581.74 kcal/kWh, and model B2 has a heat rate value of 1551.2 
kcal/kWh at peak load; this happens because there are many operating variables such as operating hours, overhaul 
schedule, and operation configuration so that each unit has different characteristics even though the generating 
units are twins. Compared model B1 has a heat rate value of 1581.74 kcal/kWh and model B2 has a heat rate value 
of 1551.2 kcal/kWh. When compared to the B3 model at peak load (740 MW), the block load has a heat rate 
performance of 1566.89 kcal/kWh. If the combined cycle power plant is operated at minimum load with a half- 
block (1-1-1) based on Figure 4., then the GT1 unit with B1 modeling will have better performance compared to 
GT2 with B2 mode; this is because GT2 is almost approaching the overhaul period as shown in the Figure 5. so 
that its performance decrease. At a low load (165 MW), modeling B1 has a heat rate of 1742.72 kcal/kWh and 
modeling B2 has a heat rate of 1922.68 kcal/kWh. 
 

 

Figure 5. Overhaul schedule 
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Figure 6. Water consumption baseline comparassion 

Figure 6. shows the baseline for modeling water consumption as an independent variable and heat rate as the 
dependent variable. The W1, W2, and W3 models have relatively high R2 and are in the vital data category to be 
used as a baseline. Figure 6. shows that all model baseline lines have almost similar gradients so that water 
consumption in any operating configuration has similar characteristics. W3 modeling shows that the full-block 
operation (2-2-1) will consume more water than the GT1 and GT2 half-block operations because the full-block 
operation runs both GT- HRSG, so water consumption will increase. If we compare the operating configurations 
of the half-block GT1 and GT2 at the same heat rate of around 1680 kcal/kWh (representation of the load Figure 
3.), then the GT1 with the W1 model consumes 274.49 m3 of water. The GT2 with the W2 model consumes 178.4 
m3; this happened because there was much damage to the feed water system in GT1, such as a leak in the high-
pressure water valve (HP CV), an abnormal water spray valve, and leaks in the valve gland packing, as shown in 
Figure 7. 
 

 

Figure 7. Service request GT1 

 

 

Figure 8. Chemical consumption scatter plot 

 
In modeling, C1, C2, and C3 (chemical consumption) produce very low R2 values, and this is due to the 

relatively constant use of chemicals under any performance conditions in the power plant. They are shown in 
Figure 8 that chemical modeling C1, C2, and C3 is presented as one to determine the concentration of data. Use 
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data concentration of chemical consumption; the average chemical consumption for GT1 is 11.81 kg, GT2 is 7.8 
kg, and the block load is 10.73 kg. 

 

5. CONCLUSION 

This paper demonstrates the use of linear regression in energy use, water consumption, and chemical 
consumption in power plants by making models for analysis. With one year and 12,232 from June 2022 until June 
2023, total data shows that the B1, B2, B3 (energy) and W1, W2, and W3 (water consumption) models have good 
R-square values. A good R2 value indicates that variable X changes affect variable Y, so this modeling can be used 
as an analysis and forecast. All models analyzed have a mean absolute percentage error (MAPE) value below 10%. 
MAPE with a low presentation indicates that if the regression analysis is used as a forecast, it will produce good 
results. Based on the energy baseline in Figure 4 of half-block operation at peak load GT2, represented by modeling 
B2, it has a lower heat rate value of 1.93% than B1 modeling. When operating the peak load on the half-block 
GT1 configuration compared to operating the full-block represented by B3 modeling, it turns out that the full-
block has a lower heat rate of 0.94%. 

At low loads, the half-block operation has a relatively large difference in heat rate. GT1 operation at low load 
shown in B1 modeling has a lower heat rate of 9.36% than GT2 operation in B2 modeling. Based on Figure 6, at 
a heat rate of 1690 kcal/kWh, it was found that the use of water in the GT2 half-block operation with W2 modeling 
was 35.01% more efficient compared to operating the half-block with GT1 modeling W1. 

Based on this study, this paper concludes that the most efficient use of energy is the GT1 or B1 model for the 
baseload and GT2 or B2 for the peak load. If consuming water becomes a priority, the GT2 or W2 model is more 
efficient than the GT1 or W1 model. Energy efficiency and water consumption can be achieved by coordinating 
intermediate loads on all generating units because the results of the modeling do not show any significant gaps. 
This model can be a baseline reference for operating intermediate loads or the power plant configuration at the 
740 MW Priok Combined Cycle Power Plant to get more efficiency. Power plant data, as has been done in research 
using the linear regression method, can be done on other power plants. It has been proven that linear regression 
analysis can be done quickly by getting a satisfactory R-squared value. The results of linear regression analysis can 
be used as an initial reference in mapping plant conditions. 
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