Utilization of red cabbage (Brassica oleracea var. Capitata L.) anthocyanins as a sensor for nitrite detection in domestic wastewater

https://doi.org/10.22146/ipas.98146

Ben Haryan Adi Rogo(1*), Vika Aulia Natasya(2), Najwa Sabila Attamimi(3), Sidiq Muliawan(4), Farida Laila(5)

(1) Department of Chemical Analysis, Vocational School of IPB University
(2) Department of Chemical Analysis, Vocational School of IPB University
(3) Department of Chemical Analysis, Vocational School of IPB University
(4) Department of Chemical Analysis, Vocational School of IPB University
(5) Department of Chemical Analysis, Vocational School of IPB University
(*) Corresponding Author

Abstract


Monitoring wastewater quality is increasingly essential for enhancing wastewater treatment procedures. Domestic wastewater, produced by residential and commercial operations, contains considerable organic, inorganic, and biological pollutants, including nitrite ions, which provide serious health hazards. This research develops a nitrite detection sensor utilizing anthocyanins derived from red cabbage (Brassica oleracea var. Capitata L.). The extraction utilized ultrasonic-assisted extraction (UAE) using a solvent combination of 96% ethanol, distilled water, and 80% acetic acid, resulting in the maximum anthocyanin content of 7.653 mg/g dry weight. The sensor's performance was assessed in terms of stability, selectivity, and sensitivity. The results demonstrated temperature stability at 30°C, with a retention rate of 98.92%, and selectivity for nitrite was verified in the presence of several possible interfering chemicals. Sensitivity tests indicated a detection threshold of 250 ppm for nitrite. The sensor exhibited a shelf life of 19 hours at ambient temperature (25°C) and 11 days at 5°C.

Keywords


monitoring; quality; anthocyanins; pollution; health



References

Artiningsih, W., Triastianti, R.D., 2018. Pengelolaan Limbah Rumah Tangga Dengan Menggunakan Buffled Up-flow Reactor. Teknol. Technoscientia 10, 135–145.

Aurelio, D.L., Edgardo, R.G., Navarro-Galindo, S., 2008. Thermal Kinetic Degradation Of Anthocyanins in a Roselle (Hibiscus Sabdariffa L. Cv. ’Criollo’) Infusion. Int. J. Food Sci. Technol. 43, 322–325. https://doi.org/10.1111/j.1365-2621.2006.01439.x

Berardi, G., Albenzio, M., Marino, R., D’Amore, T., Di Taranto, A., Vita, V., Iammarino, M., 2021. Different Use of Nitrite and Nitrate In Meats: A Survey on Typical and Commercial Italian Products As A Contribution to Risk Assessment. LWT 150, 112004. https://doi.org/10.1016/j.lwt.2021.112004

Drolc, A., Vrtovšek, J., 2010. Nitrate and Nitrite Nitrogen Determination In Waste Water Using On-Line UV Spectrometric Method. Bioresour. Technol. 101, 4228–4233. https://doi.org/10.1016/j.biortech.2010.01.015

Du, F., Keller, J., Yuan, Z., Batstone, D.J., Freguia, S., Pikaar, I., 2016. Nitrite Addition to Acidified Sludge Significantly Improves Digestibility, Toxic Metal Removal, Dewaterability and Pathogen Reduction, Scientific Reports. https://doi.org/10.1038/srep39795

Ebrahim, A., Devore, K., Fischer, T., 2021. Limitations of Accelerated Stability Model Based on the Arrhenius Equation for Shelf Life Estimation of in Vitro Diagnostic Products. Clin. Chem. 67, 684–688. https://doi.org/10.1093/clinchem/hvaa282

El Seoud, O.A., Baader, W.J., Bastos, E.L., 2016. Encyclopedia of Physical Organic Chemistry, First. ed, Encyclopedia of Physical Organic Chemistry, 5 Volume Set. John Wiley & Sons, United Kingdom (UK). https://doi.org/10.1002/9781118468586.epoc1012

Galán-Vidal, C.A., Castañeda-Ovando, A., Elena Páez-Hernández, M., Contreras-López, E., 2014. Determination of Nitrites in Commercial Sausages by Anthocyanins Degradation. Experimental Design and Optimization Article, J. Mex. Chem. Soc.

Gill, A., Zajda, J., Meyerhoff, M.E., 2019. Comparison of Electrochemical Nitric Oxide Detection Methods With Chemiluminescence for Measuring Nitrite Concentration in Food Samples. Anal. Chim. Acta 1077, 167–173. https://doi.org/10.1016/j.aca.2019.05.065

Koul, B., Yadav, D., Singh, S., Kumar, M., Song, M., 2022. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water (Switzerland). https://doi.org/10.3390/w14213542

Li, J., Li, X.D., Zhang, Y., Zheng, Z.D., Qu, Z.Y., Liu, M., Zhu, S.H., Liu, S., Wang, M., Qu, L., 2013. Identification and Thermal Stability of Purple-Fleshed Sweet Potato Anthocyanins in Aqueous Solutions With Various pH Values and Fruit Juices. Food Chem. 136, 1429–1434. https://doi.org/10.1016/j.foodchem.2012.09.054

Loypimai, P., Moongngarm, A., Chottanom, P., 2016. Thermal And pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 53, 461–470. https://doi.org/10.1007/s13197-015-2002-1

Ludmerczki, R., Mura, S., Stagi, L., Juhász, T., Dettori, M., Azara, A., Innocenzi, P., Malfatti, L., 2021. Fluorescence-Based Selective Nitrite Ion Sensing by Amino-Capped Carbon Dots. Environ. Nanotechnology, Monit. Manag. 16, 100573. https://doi.org/10.1016/j.enmm.2021.100573

Lumunon, E.I., Riogilang, H., Supit, C.J., 2021. Evaluasi Kinerja Instalasi Pengolahan Air Limbah Komunal Kiniar Di Kota Tondano. Tekno 19, 67–76.

Manahan, S.E., 2001. Environmental Chemistry, In Energy. ed. CRC Press, New York (USA).

Mercali, G.D., Jaeschke, D.P., Tessaro, I.C., Marczak, L.D.F., 2013. Degradation Kinetics of Anthocyanins in Acerola Pulp: Comparison Between Ohmic and Conventional Heat Treatment. Food Chem. 136, 853–857. https://doi.org/10.1016/j.foodchem.2012.08.024

Modin, O., Fuad, N., Abadikhah, M., I’Ons, D., Ossiansson, E., Gustavsson, D.J.I., Edefell, E., Suarez, C., Persson, F., Wilén, B.M., 2022. A Relationship Between Phages and Organic Carbon in Wastewater Treatment Plant Effluents. Water Res. X 16, 100146. https://doi.org/10.1016/j.wroa.2022.100146

Mutiah, S., Sumardiyono, Pujiastuti, peni, 2022. Analisis Parameter Nitrit, Nitrat, Amoia, Fosfat Pada AirLimbah Pertanian Dusun Bendungan, Genuk Harjo,Wuryantoro, Wonogiri. J. Kim. Dan Rekayasa 3, 33–45.

Numan, A., Al-Nedhary, A., Al-Hamadi, M., Saleh, S., Ghaleb, F., Galil, M., 2021. Novel Spectrophotometric Method with Enhanced Sensitivity for the Determination of Nitrite in Vegetables. Jordan J. Earth Environ. Sci. 12, 13–21.

Oancea, S., 2021. A Review of The Current Knowledge of Thermal Stability of Anthocyanins And Approaches to Their Stabilization to Heat. Antioxidants 10, 1337. https://doi.org/10.3390/antiox10091337

Patras, A., Brunton, N.P., O’Donnell, C., Tiwari, B.K., 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 21, 3–11. https://doi.org/10.1016/j.tifs.2009.07.004

PP RI, 2001. Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Peraturan Pemerintah Republik Indonesia.

Ravanfar, R., Moein, M., Niakousari, M., Tamaddon, A., 2018. Extraction and Fractionation of Anthocyanins From Red Cabbage: Ultrasonic-Assisted Extraction and Conventional Percolation Method. J. Food Meas. Charact. 12, 2271–2277. https://doi.org/10.1007/s11694-018-9844-y

Reyes, L.F., Cisneros-Zevallos, L., 2007. Degradation Kinetics and Colour of Anthocyanins in Aqueous Extracts Of Purple- and Red-Flesh Potatoes (Solanum tuberosum L.). Food Chem. 100, 885–894. https://doi.org/10.1016/j.foodchem.2005.11.002

Slavu, M., Aprodu, I., Milea, Ștefania A., Enachi, E., Râpeanu, G., Bahrim, G.E., Stănciuc, N., 2020. Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods 9, 1593. https://doi.org/10.3390/foods9111593

Tan, C., Li, D., Wang, H., Tong, Y., Zhao, Y., Deng, H., Kong, Y., Shu, C., Yan, T., Meng, X., 2021. Effects of High Hydrostatic Pressure on The Binding Capacity, Interaction, and Antioxidant Activity of The Binding Products of Cyanidin-3-Glucoside and Blueberry Pectin. Food Chem. 344, 128731. https://doi.org/10.1016/j.foodchem.2020.128731

Tan, S., Lan, X., Chen, S., Zhong, X., Li, W., 2023. Physical Character, Total Polyphenols, Anthocyanin Profile and Antioxidant Activity of Red Cabbage as Affected by Five Processing. Food Res. Int. 169, 112929. https://doi.org/https://doi.org/10.1016/j.foodres.2023.112929

Unnikrishnan, B., Wei, S.C., Chiu, W.J., Cang, J., Hsu, P.H., Huang, C.C., 2014. Nitrite Ion-Induced Fluorescence Quenching Of Luminescent BSA-Au25 Nanoclusters. Analyst 139, 2221–2228. https://doi.org/10.1039/c3an02291a

Verbeyst, L., Crombruggen, K. Van, Van Der Plancken, I., Hendrickx, M., Van Loey, A., 2011. Anthocyanin Degradation Kinetics During Thermal and High Pressure Treatments of Raspberries. J. Food Eng. 105, 513–521. https://doi.org/10.1016/j.jfoodeng.2011.03.015

Wibisono, R.A., Bintoro, N., 2022. Kinetika Perubahan Kualitas Bawang Merah (Allium cepa L.) Varietas Tajuk Dibawah Pengaruh Edible Coating dan Suhu Ruang Penyimpanan. Agrointek J. Teknol. Ind. Pertan. 16, 439–445. https://doi.org/10.21107/agrointek.v16i3.12752

Wulandari, A., Sunarti, T.C., Fahma, F., Noor, E., 2018. Potency of Purple Sweet Potato’s Anthocyanin as Biosensor for Detection of Chemicals in Food Products. IOP Conf. Ser. Earth Environ. Sci. 147, 012007. https://doi.org/10.1088/1755-1315/147/1/012007

Wulandari, A., Sunarti, T.C., Fahma, F., Noor, E., Enomae, T., 2021. Encapsulation of Purple Sweet Potato’s Anthocyanin in CMC-PVA Matrix For Development of Paper Strips As A Colorimetric Biosensor. Indian J. Biochem. Biophys. 58, 292–302. https://doi.org/10.56042/ijbb.v58i3.28795

Wusiman, M., Taghipour, F., 2022. Methods and Mechanisms of Gas Sensor Selectivity. Crit. Rev. Solid State Mater. Sci. 47, 416–435. https://doi.org/10.1080/10408436.2021.1941752

Yulianti, W., Kusumanti, I., Jannah, N., 2022. Determination of Nitrite and Nitrate Level in Wastewater Discharge from Smoked Fish Industry. J. Sains Nat. 12, 17. https://doi.org/10.31938/jsn.v12i1.323

Yulirohyami, Rahmah, L.A., Iniati, E., 2022. Validation Method on Green Analysis of Nitrite in Domestic Wastewater. EKSAKTA J. Sci. Data Anal. 3, 1–9. https://doi.org/10.20885/eksakta.vol3.iss1.art1

Yusoff, I.M., Mat Taher, Z., Rahmat, Z., Chua, L.S., 2022. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268



DOI: https://doi.org/10.22146/ipas.98146

Article Metrics

Abstract views : 172

Refbacks

  • There are currently no refbacks.





Ilmu Pertanian (Agricultural Science) ISSN 0126-4214 (print), ISSN 2527-7162 (online) is published by Faculty of Agriculture Universitas Gadjah Mada collaboration with Perhimpunan Sarjana Pertanian Indonesia (PISPI) and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

web
analytics View My Stats