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The availability of irrigation water during the growing season reflects on the potential 
yield at the end of the peanuts’ growing season. Monitoring water availability is essential 
to optimize production. This study aimed to identify the effect of irrigation water on 
peanuts (Arachis hypogaea (L.) Merr.) under various irrigation conditions between 
actual and simulated AquaCrop. The research was conducted in the experimental 
field utilizing four irrigation treatments which were 60%, 80%, 100% of  field capacity 
(FC), and standard irrigation. The correlation results between the actual and simulated 
ones showed that the R2 value was 0.974–0.990 for the canopy cover parameter, 
0.026–0.534 for ETc, and 0.542­0.554 for production. Comparison between actual 
and simulated AquaCrop showed Root Mean Square Error (RMSE) values of 5.08–
  9.74 for canopy cover parameters, 1.11–3.12 for ETc, and 0.82–1.09 for production. 
Welch test statistical analysis indicated values of 2.31–5.52 for plant biomass and 
0.04–3.98 for dry pod yields. The AquaCrop simulation accurately predicted canopy 
cover at 80% irrigation treatment compared to 60%, 100%, and standard irrigation 
treatments. Parameter of ETc in AquaCrop simulations showed inaccurate predictions 
for biomass production and pod dry weight when compared with actual results on 
all irrigation treatments.

INTRODUCTION 

Water is crucial in agricultural land management 
for plant growth and development. As the primary 
water resource, rainfall is essential to agriculture 
systems (Adeboye et al., 2020; Harahap, Purba and 
Rauf, 2021; Lyons et al., 2021). It is necessary to provide 
reliable weather data to build resiliency for weather 
forecasting abilities. The risk of reduced agricultural 
productivity will increase along with the unpredictable 
weather changes in the region (Nsabagwa et al., 
2019; Lyons et al., 2021). 

Peanut (Arachis hypogaea (L.) Merr.) has long been 
cultivated in Indonesia and grown commonly on dry 
land. Crop production indicates plant growth that 

reflects on previous crop management (Rahmianna 
et al., 2012; Nomura et al., 2022). Meteorological 
data, such as rainfall, temperature, wind speed and 
direction, and humidity, directly and indirectly, affect 
the regional economic growth. Varying factors 
implicate peanut productivity for each region and 
production area (Rahmianna et al., 2012; Nsabagwa 
et al., 2019; Mujiyo et al., 2022). Thus, understanding 
this meteorological information is very important as 
a supporting tool in formulating irrigation decisions.    

AquaCrop is a valuable software used for 
examining the effects of irrigation at present or in 
the future. The AquaCrop model simulation is created 
in a complex process to produce information related 
to recommendations for appropriate cropping patterns 

Received : 26th August 2022 
Revised   : 17th March 2023 
Accepted: 21st  March 2023

ISSN 0126­4214 (print) ISSN 2527­7162 (online)

¹Department of Agronomy, Faculty of Agriculture, Universitas Jember 
Jl. Kalimantan 37, Jember, East Java, Indonesia 68121 
²Department of Soil Science, Faculty of Agriculture, Universitas Jember 
Jl. Kalimantan 37, Jember, East Java, Indonesia 68121 
*Corresponding author: cahyoadi.bowo.faperta@unej.ac.id 

Ilmu Pertanian (Agricultural Science) 
http://journal.ugm.ac.id/jip 

Vol. 8 No. 1 April, 2023: 1–10 | DOI: doi.org/10.22146/ipas.77304

Keywords: 
AquaCrop, canopy cover, 
evapotranspiration, lysimeter.

Abstract Article Info 

How to cite: Suandana, F.H., Bowo, C., and Soeparjono, S. (2023). Effect of deficit irrigation on the growth and yield of peanuts (Arachis hypogaea 
(L.) Merr.) compared to AquaCrop model simulation. Ilmu Pertanian (Agricultural Science), 8(1), pp. 1–10.



based on actual environmental conditions (Allen et 
al., 2006; Pirmoradian and Davatgar, 2019; Chibarabada 
et al., 2020). 

AquaCrop model simulation requires relatively 
few input parameters and is easy to obtain and 
applicable to various plants. AquaCrop can help 
optimize the use of nitrogen fertilizers and irrigation 
for soybeans (Adeboye et al., 2020; Han et al., 2020). 
AquaCrop has also been used to simulate cotton 
growth and productivity under deficit irrigation 
conditions and has presented good results. 
AquaCrop is a tool to improve grapevine irrigation 
management (Er­Raki et al., 2020; Aziz et al., 2022). 

The AquaCrop model simulation gets ahead to 
simulate biomass, canopy cover, and wheat yield in 
winter under different irrigation treatments. 
AquaCrop can facilitate water management planning 
under various levels of availability. Through remote 
sensing, the AquaCrop model simulation can also be 
advantageous on a broader scale in the regional 
scope (Butler et al., 2017; Xing et al., 2017; Han et 
al., 2020). AquaCrop provides facilities that bridge 
the gap between research and practice in the field 
(Kelly and Foster, 2021). Different soil types will have 
other characteristics, so that the treatment will be 
further. The increasing organic C and total N content 
will affect changes in other soil chemical and physical 
properties (Kelly and Foster, 2021; Iskandar et al., 
2022; Latorre and Pe, 2022). 

Plant evapotranspiration is the sum of water 
evaporation in plants through the stomata and the soil 
surface by the way of soil pores due to meteorological 
effects. Evapotranspiration reflects a large amount 
of water that plants and soil evaporate. Reference 

evapotranspiration is the evaporation of a surface 
in a water­saturated state (Gebremedhin et al., 2022; 
Jiang et al., 2022; Liu, 2022). 

Temperature is the main factor in the evapotranspiration 
process (Jiang et al., 2022), while vegetation is the 
second factor in most areas of the world. According 
to Nomura et al. (2022), canopy cover represents 
the amount of plant tissue available for photosynthesis 
and transpiration. Soil moisture affects the rate of 
evaporation and transpiration in each growing 
phase and each irrigation (Lyons et al., 2021). 

Information about the growth and productivity 
of peanuts in various conditions of soil water availability 
has not been widely available to date. The use of 
lysimeters and simulations with AquaCrop in verifying 
peanut growth and productivity is not widely 
known. This study aimed to evaluate irrigation 
model simulations using AquaCrop software as a 
reference for crop water needs and irrigation 
management. 

MATERIALS AND METHODS 

Time and Location 

The study was conducted in the experimental 
field of the Faculty of Agriculture, the University of 
Jember, (8009’45.1” S, 113042’58.3” E), with an 
altitude of ±103 m above sea level (a.s.l.). This study 
was divided into two steps: the preparation was 
conducted from July to October 2021 and the 
planting was from November 2021 to February 
2022. 
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Figure 1. Experimental design layout
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Experimental Design  

This experiment used four lysimeters with 150 × 
50 x 50 cm dimensions transverse from North to 
South (Figure 1). Each lysimeter contained 14 plants 
of groundnut Takar-2 variety. Each lysimeter acquired 
different irrigation treatments, namely 60% (±5%), 
80% (±5%), 100% (±5%) of field capacity, and standard 
field irrigation, which farmers in Jember typically apply 
(Table 1). Irrigation treatment was also included in the 
AquaCrop model simulation to examine the differences 
between the actual and prediction results. The 
experimental parameters were canopy cover, crop 
evapotranspiration ETc, and the production between 
simulation and actual ETo. 

Meteorological data  

Daily rainfall during the planting period was 
collected using the Automatic Weather Station 
(AWS) on experimental land at the research site 
(Figure 2). 

Soil Data  

Data from the soil chemical and physical properties 
analysis are essential because it relates to the applied 
treatment. The soil used in the lysimeter was from 
the upper horizon of ±30 cm depth of Inceptisols. 
The soil chemical and physical properties can be 
referred to in Table 2. 

Figure 2. Meteorological data collected from AWS during the growing season

Treatment Label Irrigation
60% 60% FC 
80% 80% FC 
100% 100% FC 
Standard irrigation Standard irrigation

Table 1. Irrigation treatment during the growing season.

Remarks: Irrigation applied 14 days after planting.



Canopy Cover  

The canopy cover is an area or proportion of soil 
covered by a healthy plant crown, including leaves, 
branches, and stems, and is generally expressed in 
cm2 or %. As the plant ages, the canopy cover 
increases (Walters and Sinnett, 2021). A digital 
camera with a distance of 1 meter from the canopy 
was used for the imaging process. The images were 
taken perpendicular to the canopy and processed 
using ImageJ software to determine the actual 
canopy cover. The capturing distance and position 
were valid until the next interval. 

Determination of canopy cover in the AquaCrop 
was done by inputting meteorological data, the 
peanut plants, and the applied irrigation during the 
planting period. The Root Mean Square Error 
(RMSE) assessed dissimilarity between actual and 
simulated canopy cover. 

Reference Evapotranspiration (ETo) and Crop 
Evapotranspiration (ETc) 

Reference evapotranspiration (ETo) is the evaporation 
of a surface in a saturated state, while plant evapo­
transpiration (ETc) is the evaporation of plants 
under optimal growth conditions. Meteorological 
conditions, moisture content, and soil temperature 
strongly affect the plant transpiration. The Penman­
Monteith method is used to calculate the ETo value, 
while ETc is calculated through the water balance 
on the lysimeter. Equation 1 and 2 shows calculations 
of the average daily ETo, ETc (Gebremedhin et al., 
2022; Kuwagata et al., 2022; Nikolaou et al., 2022). 

 
....................(1) 
 
....................(2) 

Where Rn is the net radiation at the reference 
surface (MJ.m⁻².day⁻¹), G is the soil temperature  
(MJ.m⁻².day⁻¹),  T is the daily average temperature, 

U₂ is the wind speed, es is the saturated vapor pressure,  
ea is the actual vapor pressure of es – ea is the 
saturated vapor pressure deficit, Δ is the slope of 
the vapor pressure curve, and  is the psychometric 
constant. The ETc equations I, P, and D  which are 
irrigation, rainfall, and percolation, respectively in 
mm, n is the number of layers, S is the thickness of 
each soil layer in mm, and θ1 and θ2 are the soil 
water content using the volumetric method at the 
time of measurement. The first and second meas­
urements are in m³.m⁻³ units. Δt is the same time, 
and t is the time interval between two consecutive 
measurements in days (Liu, 2022). 

Biomass and Dry Yield 

The actual biomass measurement was calculated 
at harvest by separating the pods and stems, and 
then weighed to estimate the wet weight and dried 
under sunlight for one week until dry to determine 
the plant's dry weight. The amount of irrigation 
provided got significant attention since it showed 
that water applied and evapotranspiration determined 
groundwater availability, created drought stress, 
and affected crop yields (Puértolas et al., 2020). 

Unlike the case with actual biomass measurements, 
simulated biomass can be determined by entering 
climate data, types of plants planted, and irrigation 
given according to each treatment during the planting 
period, and later running the simulation.  

Statistical Analyses 

The RMSE analysis determines the model's accu­
racy: the smaller the RMSE value, the more accurate 
the prediction results. The RMSE and R² equation is 
in equation (3) and (4). 

 
 .....................................(3) 

 
......................................(4) 
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Chemical Value Physics Value
pH (H₂O) 7.2 Bulk Density (g/cm3) 0.82
Organic C (%) 1.87 Soil Texture Sandy Loam
Total N (%) 0.30 Field Capacity (100%) 45.62
P₂O₅ (ppm) 19.74 Particle Density 2.42
K₂O (me/100 g) 0.45 Porosity (%) 63.38

Table 2. Soil Chemical and physical characteristics

Remarks: Results of soil chemical and physical analysis.
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with Pi, Oi, n, Ō, and P are the simulation data, the 
observed data, the number of measurements made, 
the observed data, and the average of simulation data, 
respectively. It shows the dissimilarity of the plant 
canopy cover between the actual and the simulation 
data. 

The Welch's test calculates the average equality 
of two data groups under various data variances 
(Brown and Knowles, 2021). The Welch test was 
used to test the equality of the population mean 
from different data groups (Karagöz, 2016). The data 
groups in question were the actual and simulated 
data groups on plant biomass and dry pod yields. 
The variance between biomass parameters and the 
pod's dry weight between the actual and the 
prediction is calculated in Equation (5). 

 
 
....................(5) 

RESULTS AND DISCUSSION 

Canopy Cover  

The irrigation treatment affected both simulated 
and actual canopy cover, as depicted in Figure 3. 
The simulated canopy cover in 60% of irrigation was 
below the prediction compared to the actual canopy 
cover at 0–6 weeks but higher than the actual at 7–12 

weeks. The simulated canopy cover at 80% of FC was 
likely similar to the actual one at 0–7 weeks, even 
higher after 8–12 weeks. Meanwhile, the simulated 
canopy cover at 100% and the standard irrigation 
were lower than the actual one for most of the 
planting age. 

The canopy cover dynamics were susceptible to 
water content and soil moisture (Lyons et al., 2021). 
Atmospheric conditions influenced transpiration as 
a significant physiological phenomenon in plants 
(Kuwagata et al., 2022). The highest RMSE value was 
in standard irrigation, which was 9.74, while the 
lowest RMSE value was in 80% FC, which was 5.08. 
AquaCrop accurately predicted canopy cover at 80% 
FC but was low at 100% FC. 

The coefficient of determination (R2) expresed 
the relationship between the actual and simulated 
values. The category of value was very good if > 
0.91, was quite good if 0.81 – 0.90, was good if 0.66 
– 0.80 and was not good if 0.50 – 0.65 (Man et al., 
2019). The highest R2 value of 0.990 was found in 
80% FC, while the lowest R2 value of 0.974 was at 
60% FC. This result showed that AquaCrop was very 
good in predicting the canopy cover if the applied 
irrigation was sufficient (80% FC), but decreased as 
the irrigation was less (60% FC) or excess (100% FC) 
and standard irrigation. 

These results were also similar to related studies 
(Giménez et al., 2017; Chibarabada et al., 2020), 

Figure 3. Observed and predicted canopy cover for all irrigation treatments.



which showed that AquaCrop could predict the 
growth of the canopy of peanut plants (Arachis 
hypogaea (L.) Merr.) well on deficit irrigation and 
full irrigation in the South African region. AquaCrop 
also showed promising results in predicting the 
growth of soybean canopy in drought stress by giving 
almost the exact yield as the actual ones. 

Reference Evapotranspiration (ETo) and Crop 
Evapotranspiration (ETc)  

Figure 4 demonstrates that each treatment of Eto 
and ETc were different and permanently changed 
along with plant growth. Also, the irrigation treatment 
affected ETc and ETo, both simulated and actual. The 
simulated ETc on 60% irrigation treatment was lower 
than the actual ETc at 0–3 weeks but higher at 5–10 
weeks. The simulated ETc on irrigation treatment was 
80% and 100%, and the standard irrigation was lower 
than the actual ETc throughout the planting age. 

The highest R2 value was in 80% of FC, which 
was 0.534. At the same time, the lowest R2 value 
was at 60% FC, namely 0.026, with the lowest RMSE 
value being 1.11 while the highest one was 3.12. 
The smaller the RMSE value, the more accurate the 
prediction result will be (Man et al., 2019). This result 
showed that the simulations could accurately predict 
the actual ETc compared to the other three irrigation 
treatments at 60%. 

Peanut evapotranspiration during the growth 
phase experienced an inconsistent increase and 
decrease, while other studies carried out by Silva et 
al. (2018); Souza et al. (2020) showed different results, 
where evapotranspiration experienced a consistent 
increase along with plant growth. The difference in 
average air temperatures, as well as different 
amounts and conditions of vegetation, was the 
source of the inconsistency. This statement was 
supported by Gebremedhin et al. (2022); Jiang et al. 
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Figure 4. Observed ETo and ETc for all treatments during growing season.

Figure 5. Biomass and dry pod between observation and prediction (N=14 samples) (A) Plant 
biomass; (B) Dry pod.
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(2022), which conveyed that temperature was the 
main factor in the evapotranspiration process, while 
vegetation was the second factor in most regions of 
the world. In addition to temperature and vegetation, 
soil moisture also affected evapotranspiration. This 
statement corresponded to the result of Lyons et al. 
(2021) and Kuwagata et al. (2022), which conveyed 
that the rate of evaporation and transpiration in each 
growth phase and irrigation treatment could be 
different because it was affected by soil moisture. 

Biomass and Dry Yield 

Figure 5A presents the results of the actual and 
simulated biomass calculations. Figure 5A shows 
that the irrigation treatment given affected plant 
biomass. The higher the irrigation given, the higher 
the plant biomass produced. 

The 60% FC irrigation treatment presented the 
lowest biomass compared to other treatments. In 
comparison, the 100% FC irrigation treatment and 
standard irrigation, which the farmers in Jember 
generally apply, showed the highest actual and simulated 
biomass. The actual and simulated biomass at 60% 
FC was 6.76 and 7.43 tons/ha; at 100% FC, it was 
8.08 and 9 tons/hectare, while in standard irrigation, 
it was 8.57 and 9.03 tons/hectare, respectively. Figure 
5A also shows that the actual biomass was lower 
than the simulated biomass; this explained that the 
AquaCrop simulation presented a prediction that 
was (over­predicted) compared to the real (Butler 
et al., 2017). 

The prediction that was too high was the most 
evident in the irrigation treatment of 80% of the 
field capacity with the difference between the 
actual and the simulated values of 1.79 tons/hectare. 
On the other hand, almost the exact prediction shown 
in the standard irrigation treatment was under the 

difference between the actual and the simulated 
being only 0.46 ton/hectare. This result showed that 
the standard irrigation treatment used by farmers 
in Jember, the AquaCrop simulation, could predict 
the actual biomass, which was inclined to be more 
accurate when compared to other treatments, 60% 
FC to 100% FC. 

Figure 5B compares dry pod yield in each lysimeter, 
both actual and simulation. Figure 5B shows that 
the irrigation treatment also affected the pods' dry 
yield. Sufficient irrigation provided a higher dry pod 
product (Wasko et al., 2022). The 60% FC irrigation 
treatment gave the lowest dry yield of pods compared 
to other treatments. The 100% FC and standard 
irrigation treatments gave the highest pod dry gains 
compared to actual and simulated treatments. 

The actual and simulated pod dry yields at 60% 
FC were 3.17 and 3.76 tonnes.ha⁻¹, at 80% FC was 
3.48 and 4.69 tonnes.ha⁻¹ and 100% FC were 3.86 
and 4. 68 tonnes.ha⁻¹, while the standard irrigation 
was 4.24 and 4.69 tonnes.ha⁻¹. The actual dry pod 
yield which tended to be lower than the simulated 
pod dry yield explained that the AquaCrop simulation 
provided too high (over predicted) predictions 
compared to the actual results. The most significant 
over­predicted was obtained in 80% FC with a 
difference of 1.21 tonnes.ha⁻¹. Meanwhile, the 
higher prediction accuracy was shown in standard 
irrigation, with a difference of 0.45 tonnes.ha⁻¹. 

The results of the Welch tests in Table 3 show 
that in the treatment plant biomass of 60%, 80%, 
100%, and standard irrigation, the actual plant biomass 
differed from the average simulated plant biomass. 
Meanwhile, the dry yield of 60% and 100% of treatment 
pods and standard irrigation did not differ from the 
average dry yield of simulated pods. This experiment 
showed a difference between the actual and the 

Observation Variable Treatment P – Value > < α (0.05) Interpretation
Biomass 60% FC 5.52 > Different

80% FC 3.74 > Different
100% FC 2.31 > Different
Standard 3.83 > Different

Dry Yield 60% FC 0.04 < No different
80% FC 3.98 > Different
100% FC 0.09 > Different
Standard 0.04 < No different

Table 3. Welch tests of biomass and dry yield between observation and prediction.

Remarks: Welch test's result for the variation of two sample groups with different populations.



AquaCrop simulation, while the dry pod yield was 
not different. 

The simulated biomass was higher than the actual 
biomass in 60% irrigation. This difference was in 
contrast to the research conducted by other researchers 
(Paredes et al., 2015; Chibarabada et al., 2020), 
which showed that in 60% irrigation, the simulated 
biomass presented the same results as actual biomass.  

Furthermore, further experiments (Pirmoradian 
and Davatgar, 2019; Kelly and Foster, 2021) showed 
that simulated biomass was too high or too low 
from actual biomass, indicating that AquaCrop 
exceeded predictions in conducting simulations. 
Nonetheless, the dry yield of simulated and actual 
pods on irrigation of 60% gave the same results as 
the study conducted by (Khov et al., 2017; 
Chibarabada et al., 2020), although in this case, the 
dry yield of simulated pods tended to be higher than 
the dry yield of actual pods. 

CONCLUSIONS 

The simulation of the AquaCrop model was entirely 
accurate in predicting the canopy cover of peanut 
plants if sufficient irrigation was provided (80% FC). 
However, the accuracy would decrease if the irrigation 
was less (60% FC) or excess (100% FC and standard 
irrigation). Meanwhile, on the parameters of ETc 
and production (biomass and dry weight of pods), 
the AquaCrop simulation showed inaccurate 
predictions compared to the actual output in all 
irrigation treatments. The high rainfall during the 
rainy season was challenging in this research. We 
recommend the following experiment during the 
dry season to compare this study's results.  
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