Serapan Logam Berat oleh Fungi Mikoriza Arbuskula Lokal pada Nauclea orientalis L. dan Potensial untuk Fitoremediasi Tanah Serpentine

https://doi.org/10.22146/jik.24902

Faisal Danu Tuheteru(1*), Asrianti Arif(2), Eka Widiastuti(3), Ninis Rahmawati(4),

(1) Jurusan Kehutanan, Fakultas Kehutanan dan Ilmu Lingkungan, Universitas Halu Oleo. Jl. Mayjen S. Parman, Kendari 93121
(2) Jurusan Kehutanan, Fakultas Kehutanan dan Ilmu Lingkungan, Universitas Halu Oleo. Jl. Mayjen S. Parman, Kendari 93121
(3) Jurusan Kehutanan, Fakultas Kehutanan dan Ilmu Lingkungan, Universitas Halu Oleo. Jl. Mayjen S. Parman, Kendari 93121
(4) Jurusan Kehutanan, Fakultas Kehutanan dan Ilmu Lingkungan, Universitas Halu Oleo. Jl. Mayjen S. Parman, Kendari 93121
(*) Corresponding Author

Abstract


Pengaruh fungi mikoriza arbuskula (FMA) lokal terhadap pertumbuhan dan serapan logam tanaman Nauclea orientalis L., telah diteliti. Tanaman ditumbuhkan pada kondisi rumah kaca pada media serpentine soil tanpa dan dengan FMA (Glomus sp., Acaulospora tuberculata, dan campuran) selama 2 bulan. Akar tanaman lonkida terkolonisasi FMA dengan ditemukan struktur FMA berupa hifa internal>hifa eksternal>coil> vesikula>arbuskula. Kolonisasi A. tuberculata dan Glomus sp. signifikan meningkatkan berat kering akar (P<0,01, r=0,810) dan pucuk (P<0,05, r=0,802). N. orientalis memiliki ketergantungan tinggi terhadap inokulasi FMA (MIE>65). Nilai Transpor Faktor (TF) <1 untuk semua logam dengan urutan serapan logam Fe>Mn>Ni>Cr. Glomus sp mengurangi serapan Fe dan Ni akar sebesar 13% dan 3%, secara berturutan. A. tuberculata meningkatkan serapan semua logam. Kemampuan serapan logam berbeda antara jenis FMA.


Heavy Metal Uptake by Indigenous Arbuscular Mycorrhizas of Nauclea orientalis L. and the Potential for Phytoremediation of Serpentine Soil

Abstract

Effect of indigenous arbuscular mycorrhizal fungi (AMF) on growth and metal uptake of Nauclea orientalis L. plants, has been investigated. Plants were grown in greenhouse conditions on serpentine soil media without and with the AMF (Glomus sp., Acaulospora tuberculata, and mix) for two months. Lonkida roots was colonized by AMF because it was found structures of AMF: internal hyphae>external hypae>coil>vesicles>arbuscule. Colonization A. tuberculata and Glomus sp. significantly increased dry weight of root (P<0.01, r=0.810) and shoot (P<0.05, r=0.802). N. orientalis has a high dependence on inoculation of AMF (MIE>65). Transport Factor value (TF) <1 for all metals with metal uptake sequence was Fe>Mn>Ni>Cr. Glomus sp reduced Fe and Ni uptake on roots by 13% and 3%, respectively. A. tuberculata increased the uptake of all metals. Metal uptake ability was difference among types of AMF.



Keywords


Acaulospora tuberculata; lonkida; phytoextraction; rhizophyltration; serpentine soil

Full Text:

PDF


References

  1. Amir H, Lagrange A, Hassaïne N, Cavaloc Y. 2013. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585-595 
  2. Andrade SAL, Gratao PL, Silveira APD, Schiavinato MA, Azevedo RA, Mazzafera P. 2009. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370 
  3. Bose S, Vedamati J, Rai V, Ramanthan AL. 2008. Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil : An impilication of phytoremediation. Geoderma 145:136-142. 
  4. Carter MR. 1993. Soil sampling and methods of analysis Boca Raton. Lewis Publishers, USA. 
  5. Chen BD, Zhu Y-G, Duan J, Xiao XY, Smith SE. 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution 147:374-380. 
  6. Collins S, Martins X, Mitchell A, Teshome A, Arnason JT. 2006. Quantitative ethnobotany of two east Timorese cultures. Economic Botany 60(4):347-361. 
  7. Collins S, Martins X, Mitchell A, Teshome A, Arnason JT. 2007. Fataluku medicinal ethnobotany and the East Timorese military resistance. Journal Ethnobiology and Ethnomedicine 3(5):1-10. 
  8. Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology 158:777–786. 
  9. Doubková P, Suda J, Sudová R. 2011. Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant and Soil 345:325-338 
  10. Ekamawanti HA, Setiadi Y, Sopandie D, Santosa DA. 2014. Mercury stress resistances in Nauclea orientalis seedlings inoculated with arbuscular mycorrhizal fungi. Agriculture, Forestry, and Fisheries 3(2):113-120 
  11. Galli U, Schuepp H, Brunold C. 1995. Thiols of Cu-treated maize plants inoculated with the arbuscular mycorrhizal fungus Glomus intraradices. Physiologia Plantarum 94:247–253.
  12. Ghosh S, Verma NK. 2006. Growth and mycorrhizal dependency of Acacia mangium Willd. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic Soil. New Forest 31:75-81. 
  13. Giasson P, Jaouich A, Gagné S, Massicotte L, Cayer P, Moutoglis P. 2006. Enhanced phytoremediation: A study of mycorrhizoremediation of heavy metal contaminated soil. Remediation 17: 97–110 
  14. Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115-1122. 
  15. Guo Y, George E, Marschner H. 1996. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205 
  16. Habte M, Manjunath A. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3-12 
  17. Husna, Wilarso S, Budi R, Mansur I, Kusmana C. 2016. Growth and nutrient status of kayu kuku (Pericopsis mooniana Thw.) with micorrhiza in soil media of nickel post mining. Pakistan Journal of Biological Science 19: 158-170 
  18. Husna. 2010. Pertumbuhan bibit kayu kuku (Pericopsis mooniana THW) melalui aplikasi fungi mikoriza arbuskula (FMA) dan ampas sagu pada media tanah bekas tambang nikel. Tesis (Tidak dipublikasikan). Universitas Halu Oleo, Kendari. 
  19. Javaid A. 2011. Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Dalam Khan MS, editor. Biomanagement of metal-contaminated soils. Springer, New York. 
  20. Joner EJ, Leyval C. 1997. Uptake of 209 Cd by roots and hiphae of a Glomus mosseae/Trifolium subterraneum Mycorrhiza from soil amended with high and low concentration of cadmium. New Phytologist 135:353-360. 
  21. Karagiannidis N, Hadjisavva ZS. 1998. The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutrient Cycling in Agroecosystems 52:1–7. 
  22. Kartikasari SN, Marshal AJ, Beehler BM. 2012. Ekologi Papua. Seri Ekologi Indonesia. Jilid VI. Yayasan Pustaka Obor Indonesia dan Conservation International, Jakarta. 
  23. Ker K, Christine C. 2009. Nickel remediation by AM-colonized Sunflower. Mycorrhiza 20:399-406 Keßler PJA, Bos MM, Sierra Daza SEC, Kop A, Willemse LPM, Pitopang R, Gradstein SR. 2002. Checklist of woody plants of Sulawesi, Indonesia. Blumea Supplement 14. National Herbarium Nedereland, Universiteit Leiden branch. 
  24. Khan AG. 2001. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environment International 26:417–423. 
  25. LaFrankie JV. 2010. Trees of tropical Asia. La Union (PH) : BlackTree Publication, Inc. 
  26. Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H. 2011. New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Canadian Journal of Microbiology 57:21-28 
  27. Lagrange A, L’Huillier L, Amir H. 2013. Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils: effects of phosphorus availability on arbuscular mycorrhizal colonization of Costularia comosa under field conditions. Mycorrhiza 23:655–661 
  28. Lambers H, Chapin III FS, Pons TL. 2008. Plant physiology ecology. Second edition. Springer, New York. 
  29. Marghescu T. 2001. Restoration of degraded forest land in Thailand: the case of Khao Kho. Unasylva 207(52):52-56. 
  30. Muleta D, Woyessa D. 2012. Importance of arbuscular mycorrhizal fungi in legume production under heavymetal-contaminated soils. Dalam Zaidi A, Wani PA, Khan MS, editor. Toxicity of heavy metals to legumes and bioremediation. Springer, New York. 
  31. Muslich M et al. 2013. Atlas Kayu Indonesia Jilid IV. Pusat Penelitian dan Pengembangan Keteknikan Kehutanan dan Pengolahan Hasil Hutan, Bogor. 
  32. Nogueira MA, Cardoso EJBN, Hampp R. 2002. Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1-10. 
  33. Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN. 2007. Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273-284. 
  34. Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J. 2011. The effect of mycorrhiza on the growth and elemental composition of ni-hyperaccumulating plant Berkheya coddii roessler. Environmental Pollution 159:3730-3738. 
  35. Redon PO, Be´guiristain T, Leyval C. 2009. Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195 
  36. Sichaem J, Surapinit S, Siripong P, Khumkratok S, Jong-Aramruang J, Tip-Pyang S. 2010. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia 81:830-833. 
  37. Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Third ed. Academic Press, New York. 
  38. Takács T. 2012. Site-specific optimization of arbuscular mycorrhizal fungi mediated phytoremediation. Dalam Zaidi A, Wani PA, Khan MS, editor. Toxicity of heavy metals to legumes and bioremediation. Springer. 
  39. Tawaraya K, Turjaman M. 2014. Use of arbuscular mycorrhizal fungi for reforestation of degraded tropical forests. Dalam Solaiman Z, Abbott LK, Varma A, editor. Mycorrhizal fungi: Use in sustainable agriculture and land restoration. Springer, New York. 
  40. Tseng CC, Wang JY, Yang L. 2009. Accumulation of copper, lead, and zinc by in situ plants inoculated with AM fungi in multicontaminated soil. Communications in Soil Science and Plant Analysis 40:2122 
  41. Tuheteru FD, Husna, Arif A. 2011. Respon pertumbuhan dan ketergantungan Albizia saponaria (Lour.) Miq terhadap inokulasi Fungi Mikoriza Arbuskula local Sultra pada media tanah pascatambang nikel. Berita Biologi 10(5):605-612. 
  42. Tuheteru FD, Kusmana C, Mansur I, Iskandar, Tuhuteru EJ. 2016. Potenstial of lonkida (Nauclea orientalis L.) for phytoremediation of acid mined drainage at PT. Bukit Asam Tbk. (Persero), Indonesia. Research Journal of Botany 11 (1-3):9-17 
  43. Tuheteru FD. 2015. Phytoremediation potential of lonkida (Nauclea orientalis L.) in an acid mine drainage artificial wetland. Dissertation (Unpublished). Bogor Agricultural University. (In Indonesia) 
  44. Turnau K, Mesjasz-Przybylowicz J. 2003. Arbuscular mycorrhiza of Berkheya coddii and other ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185-190 
  45. Vivas A, Barea JM, Biro B, Azcon R. 2005. Interactive effect of Brevibacillus brevis and Glomus mossae, both isolated from Cd contaminated soil, on plant growth, physicological mycorrhizal fungul characteristis and soil enzimatic activities in Cd polluted soil. Environmental Pollution 134:257-266 
  46. Vivas A, Biró B, Németh T, Barea JM, Azcon R. 2006. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biology and Biochemistry 38:2694-2704 
  47. Wang F, Lin X, Yin R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225-232 
  48. Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA. 2005. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. Journal of Plant Nutrition 28:2065–2077



DOI: https://doi.org/10.22146/jik.24902

Article Metrics

Abstract views : 111 | views : 88

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Redaksi Jurnal Ilmu Kehutanan
Fakultas Kehutanan Universitas Gadjah Mada
Jl. Agro No 1, Bulaksumur, Sleman 55281
Telp. (0274) 512102, 550541, 6491420
Fax. (0274) 550541 E-mail : jik@ugm.ac.id
website : jurnal.ugm.ac.id/jikfkt/

 

Indexed by :

 

Jurnal Ilmu Kehutanan/Journal Forest Science is under the license of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

Creative Commons License

View My Stats