PENYUSUNAN SKEDUL SUHU DAN KELEMBABAN AWAL UNTUK PENGERINGAN DI DALAM TANUR PENGERING KONVENSIONAL BAGI KAYU DURIAN BERSORTIMEN 55 X 195 mm

YUSTINUS SURANTO*

Jurusan Teknologi Hasil Hutan, Fakultas Kehutanan UGM, Yogyakarta

ABSTRACT

Decreasing supply of most commercial depectorcarp wood as raw material inspires wood working industry producing building construction component to look for uncommercial wood to be utilized. Proper utilization of these woods must be based on wood properties consisting of wood basic and processing properties. Drying property is one of the most important wood processing property. Proper drying process will be the main key to utilize effectively and ensure to get high-quality wood product.

Durian (Durio spp) is one of uncommercial wood grown naturally in Sulawesi island forest. This wood is used by wood industry to produce building component to be exported. There is no yet drying schedule formulation of this wood lumber in dimension of 55 mm thick and 195 mm wide. The objective of this research was to develop drying schedule for durian wood in that dimension. Drying schedule was developed by the result of quick drying test. The formulation of drying schedule was elaborated based on Terazawa method.

The research result showed that initial moisture content and specific gravity of this wood was 103.4% and 0.48 respectively. Theoretically, the first drying schedule was 54°C as an initial temperature and 80°C as a final temperature. Web bulb depression for the initial step of drying was 4°C and for the end step was 30°C. The range of relative humidity were 80% to 17%. These drying schedule was coded by T5F6.

Keywords: drying schedule prediction, 55 x 195 mm sortiment, durian lumber, Terazawa method

*Alamat korespondensi: E-mail: surantoyustinus@yahoo.com

PENDAHULUAN

Hutan hujan tropika di Indonesia pada saat ini mengalami degradasi yang serius sebagai akibat dari manajemen hutan yang tidak tepat, penebangan ilegal, kebakaran hutan dan pengubahan status penggunaan dari lahan hutan menjadi penggunaan yang lain. Degradasi kondisi hutan ini mengurangi kemampuannya untuk menyediakan kayu dari kelompok bangkirai berstatus non komersial untuk difungsikan sebagai alternatif pemenuhan kekurangan bahan baku kayu dari kelompok komersial. Bagi industri perkayuan yang berada di Pulau Sulawesi, salah satu bahan yang terpilih sebagai alternatif tersebut adalah kayu durian. Terpilihnya kayu durian ini didasari oleh realitas hasil inventarisasi oleh Tim Inventarisasi P.T Rante Mario (tanpa tahun) berupa ketersediaan dalam jumlah besar di dalam hutan alam. Ketersediaan dalam jumlah besar ini dimungkinkan karena sangat banyak anggota populasi pohon durian yang tumbuh alami di hutan Pulau Sulawesi.

Pemanfaatan kayu durian sebagai bahan baku industri perkayuan sudah tentu terorientasi pada dua
hal, yaitu efisiensi yang tinggi atas bahan baku dan kualitas yang tinggi atas produk kayu yang dihasilkan. Untuk mencapai orientasi itu, maka sifat dasar kayu durian dan sifat pengolahannya perlu diteliti agar dapat dijadikan dasar bagi proses produksi. Sifat pengeringan kayu durian merupakan salah satu sifat yang sangat penting di dalam sifat pengolahan kayu, sedangkan kayu ini yang berupa kayu gergajian bersortimen tebal 55 mm dan lebar 195 mm belum memiliki skedul suhu dan kelembabannya. Oleh karena itu, sifat pengeringan kayu gergajian dengan sortimen sebagaimana disajikan perlu diteliti, terutama pada proses pengeringan yang dilakukan di dalam tanur pengering konvensional, mengingat metoda pengeringan tanur ini memungkinkan untuk mendapatkan kayu durian kering dalam jumlah volume yang banyak dan durasi pengeringan yang relatif pendek.

Salah satu hal terpenting di dalam proses pengeringan dengan tanur pengering konvensional ini adalah penerapan skedul suhu dan kelembaban yang tepat sesuai dengan karakter kayu durian yang sedang dikerekingkan. Penelitian ini dilakukan dengan tujuan untuk menyusun skedul suhu dan kelembaban kayu gergajian durian bersortimen lebar 195 mm dengan ketebalan 55 mm yang berasal dari hutan alam yang tumbuh kawasan hutan alam yang berlokasi di antara sungai Mora dan Sungai Budong bagian hulu di Sulawesi Tengah, Pulau Sulawesi. Skedul suhu dan kelembaban ini disusun berdasarkan data hasil pengujian pengeringan secara cepat. Pengujian pengeringan secara cepat ini dilakukan dengan mengikuti suatu metode yang dikembangkan oleh Terazawa (1965).

METODOLOGI PENELITIAN

Bahan dan Alat Penelitian

Hasil penebangan terhadap pohon-pohon durian berukuran diameter lebih dari 60 cm yang tumbuh di dalam kawasan hutan alam yang berada di antara Sungai Mora dan Sungai Budong bagian hulu dengan kelimpahan 1 pohon durian setiap 2,5 ha, dipilih sebatang secara acak dan ditandai. Bersama dengan batang-batang yang lain, pada batang pohon durian terpilih dilakukan pembagian batang bebas cabang dan diangkut ke industri penggergajian yang berlokasi di Makasar. Sebagaimana batang lainnya, batang terpilih ini digergaji secara tangensial untuk mendapatkan sortimen kayu masing-masing berukuran panjang 5.000 mm, lebar 195 mm dan tebal 55 mm. Sebuah sortimen kayu gergajian dipilih secara random dari banyak sortimen berukuran sama yang dihasilkan dari penggergajian seluruh bagian batang pohon terpilih. Sortimen terpilih secara random itu kemudian digergaji secara longitudinal pada setiap panjang 500 mm, sehingga diperoleh 10 sortimen masing-masing berukuran panjang 500 mm lebar 195 mm dan tebal 55 mm. Dua potongan yang berasal dari kedua ujung balak, yakni potongan pada bagian pangkal dan bagian ujung, dibuang untuk menghindarkan pengaruh perbedaan kadar air yang disebabkan oleh penguapan air melalui bagian ujung selama pengangkutan dari hutan ke lokasi industri kayu. Dengan demikian, diperoleh delapan potongan sortimen. Ke-8 sortimen yang terakhir ini dibungkus plastik secara rapat dan diangkut menuju ke Laboratorium Pengeringan dan Pengawetan Kayu, Jurusan Teknologi Hasil Hutan, Fakultas Kehutanan Universitas Gadjah Mada di Yogyakarta.

Selanjutnya, sortimen diuji sifat fisik dan sifat pengeringannya. Sifat fisik meliputi kadar air, berat jenis dan penyusutan. Penentuan sifat pengeringan dilakukan berdasarkan pengujian pengeringan secara
PENYUSUNAN SKEDUL SUHU 110

Di Laboratorium Pengerinan Kayu, sebuah sortimen sepanjang 50 cm dipilih secara random di antara delapan potongan tersebut. Potongan yang terpilih ini kemudian dipotong-potong lagi menjadi tujuh potong yang masing-masing secara berurutan sepanjang (1) 110 mm, (2) 20 mm, (3) 20 mm, (4) 200 mm, (5) 20 mm, (6) 20 mm dan (7) 110 mm. Dua potongan masing-masing sepanjang 110 mm pada kedua bagian ujung ini, yakni potongan (1) dan (7), dibuang untuk menghindarkan pengaruh perbedaan kadar air yang disebabkan oleh penguapan air melalui bagian ujung. Dua buah potongan masing-masing sepanjang 20 mm, yakni potongan (2) dan (6), merupakan bagian yang digunakan untuk membuat contoh uji bagi pengukuran kadar air awal. Dua buah potongan berikutnya yang masing-masing sepanjang 20 mm, yakni potongan (3) dan (5), merupakan bagian yang digunakan untuk membuat contoh uji bagi pengukuran berat jenis dan penyusutan. Sebuah potongan berukuran panjang 200 mm, yakni potongan ke-4, difungsikan sebagai bahan untuk membuat contoh uji pada pengujian pengeringan secara cepat. Potongan ke-4 ini diserut pada kedua permukaannya, kemudian digergaji secara longitudinal, sehingga mendapatkan contoh uji berukuran tebal 55 mm, lebar 100 mm dan panjang 200 mm. Setelah dipotong dan menjadi contoh uji, setiap contoh uji itu ditimbang segera.

Pengujuan Sifat Fisika Kayu

Penentuan sifat fisika berupa kadar air, berat jenis dan penyusutan pada sampel-sampel itu dilakukan dari kondisinya yang basah menuju ke kondisi kering tanur. Penentuan sifat-sifat fisika kayu ini dilakukan berdasarkan metoda ASTM D 143-52 (Anonimous, 2002).

Pengujuan Pengeringan secara Cepat

Pengujuan pengeringan secara cepat merupakan metoda empiris yang digunakan untuk menentukan skedul suhu dan kelembaban. Metode ini digunakan sebagai titik awal bagi penyusunan skedul suhu dan kelembaban yang aktual dan tepat bagi kayu gergaji yang berasal dari spesies yang manapun (Terazawa, 1965). Oleh karena itu, skedul suhu dan kelembaban yang diperoleh merupakan skedul suhu dan kelembaban yang berstatus prediksi untuk diterapkan pada proses pengeringan yang pertama kali. Skedul prediksi secara teoritis ini perlu diuji dan disempurnakan lagi sesuai dengan sifat kayunya melalui praktik secara berulang-ulang atas pengerinan kayu tersebut. Di dalam praktik yang berulang-ulang atas pengerinan itu, diterapkan aktivitas-aktivitas berupa (1) evaluasi hasil pengeringan atas penerapan skedul teoritis ini, (2) pengkoreksian aspek suhu, dan/atau depresi suhu, (3) perumusan skedul baru sebagai hasil revisi yang pertama, (4) penerapan skedul hasil revisi pertama evaluasi. Prosedur bagi penerapan metoda Terazawa untuk menetapkan skedul suhu dan kelembaban yang bersifat prediktif ini terdiri atas beberapa langkah sebagai berikut:

1. Sampel berukuran tebal 55 mm, lebar 100 mm dan panjang 200 mm yang berasal dari potongan nomor 4, diletakkan di dalam oven bertenaga listrik yang diatur pada kondisi suhu 103 ± 2°C.
2. Sampel ditimbang dan pemunculan serta perkembangan retak permukaan dan retak ujung diamati secara periodis setiap 2 jam selama proses pengeringannya sampai sampel itu mencapai kadar air yang konstan pada tingkat 1 persen.

3. Pada akhir proses pengeringan, sampel itu dihitung dan diukur jumlah retak permukaan dan retak ujung (sebagai Catat 1), juga cacat deformasi (sebagai Catat 2). Sampel ini kemudian dipotong tepat pada bagian tengah dalam arah longitudinalnya untuk mengetahui dan mengukur retak-dalam atau honey-comb (sebagai Catat 3). Penetapan tingkat kerusakan bagi masing-masing jenis cacat ini didasarkan pada jumlah dan ukuran cacat yang terjadi pada permukaan kayu dalam kondisi kering mutlak.

4. Tingkat cacat kemudian ditentukan dan diperlihatkan berdasarkan sekala nilai yang berkisar antara 1 sampai dengan 8 bagi cacat retak permukaan dan ujung (catat 1) dan juga bagi cacat deformasi (catat 2), dan antara 1 sampai dengan 6 bagi cacat retak-dalam (catat 3). Penentuan itu didasarkan pada tabel yang ditetapkan oleh Terguson pada tahun 1951 (Terazawa, 1965). Nilai pada pemerikatan ini diartikan bahwa semakin rendah nilainya, maka semakin rendah (sedikit) pula cacat yang terjadi, atau sebaliknya, semakin tinggi nilai pada peringkat ini, maka semakin tinggi (banyak) pula cacat yang terjadi.

5. Berdasarkan pada dua hal, yaitu hasil pemeringkatan di atas dan tabel termometer suhu bola kering (TSBK) dan tabel depresi suhu bola basah (DSBB) sebagaimana disajikan pada manual Forest Product Laboratory (Rasmussen, 1961), ditentukanlah suhu minimum dan maksimum termometer suhu bola kering serta depresi suhu bola basah bagi kayu-gergajian dari spesies tertentu. Kedua hal itu, yaitu suhu minimum dan suhu maksimum serta depresi suhu bola basah, pada gilirannya dijadikan dasar yang berguna untuk menyusun skedul suhu dan kelembaban yang sesuai bagi kayu durian.

HASIL DAN PEMBAHASAN

Sifat Fisika Kayu

Sifat fisika sampel kayu durian yang disajikan di dalam Tabel 1 memperlihatkan nilai rata-rata kadar air adalah 103,45%, berat jenis 0,48, nilai penyusutan pada arah panjang 1,25%, nilai penyusutan pada arah tebal 6,36 %, nilai penyusutan pada arah lebar 6,59% dan nisbah penyusutan pada arah tebal rata-rata adalah 0,96.

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air (%)</th>
<th>Berat Jenis</th>
<th>Penyusutan pada kondisi kering mutlak (%) pada arah</th>
<th>Nisbah penyusutan T/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Panjang</td>
<td>Tebal</td>
</tr>
<tr>
<td>1</td>
<td>102,64</td>
<td>0,48</td>
<td>1,43</td>
<td>6,54</td>
</tr>
<tr>
<td>2</td>
<td>104,85</td>
<td>0,47</td>
<td>1,12</td>
<td>7,02</td>
</tr>
<tr>
<td>3</td>
<td>97,96</td>
<td>0,49</td>
<td>1,20</td>
<td>5,52</td>
</tr>
<tr>
<td>4</td>
<td>105,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>105,96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>103,45</td>
<td>0,48</td>
<td>1,25</td>
<td>6,36</td>
</tr>
</tbody>
</table>

Catatan: Sampel 4 dan 5 hanya ditujukan untuk pengukuran kadar air.
Pengujian Pengerengan secara Cepat

Hasil penelitian mengenai pengerengan secara cepat disajikan sebagai berikut:
1. Status dan klasifikasi cacat

Pada sampel pengujian pengerengan terdapat cacat sebagai berikut. Retak permukaan sebanyak satu buah yang kemudian retak ini merapat lagi setelah pemanasan selama 56 jam, tidak ada retak ujung, deformasi sebesar 1,12 mm dan 2 retak-dalam dengan panjang masing-masing 13,21 dan 11,56 mm. Berdasarkan data di atas, keberadaan tiga jenis cacat tersebut (yaitu retak permukaan dan ujung, deformasi dan retak-dalam) pada sample itu dapat diperikat. Sampel pengujian pengerengan diklasifikasikan sebagai peringkat 2 dalam hal retak awal, peringkat 4 dalam hal deformasi dan peringkat 2 dalam hal retak-dalam.

2. Penetapan suhu awal, depresi suhu bola basah dan suhu akhir

Berdasarkan hasil pengklasifikasian di atas, dapat ditentukan suhu minimum, suhu maksimum dan depresi suhu bola basah pada awal maupun akhir proses pengerengan. Penentuan dilakukan mengikuti acuan yang dibuat oleh Terazawa (1965) sebagaimana disajikan pada Tabel 2 berikut.

Berdasarkan Tabel 2, dengan retak awal yang tergolong ke dalam kelas 2, maka suhu awal dan depresi suhu bola basah serta suhu akhir secara berurutan adalah 65°C dan 5,5°C serta 90°C. Berdasarkan deformasi yang tergolong ke dalam kelas 4, maka suhu awal dan depresi suhu bola basah serta suhu akhir secara berurutan adalah 54°C dan 4,0°C serta 80°C. Berdasarkan retak-dalam yang tergolong ke dalam kelas 2, maka suhu awal dan depresi suhu bola basah serta suhu akhir secara berurutan adalah 55°C dan 4,5°C serta 83°C.

Dengan memperbandingkan kelompok angka yang disajikan oleh masing-masing peringkat itu, jelaslah bahwa aspek cacat deformasi menghasilkan angka yang paling aman yang merefleksikan kondisi pengerengan yang paling ringan. Dengan alasan itu, aspek cacat deformasi dipilih sebagai penentu untuk menyusun skedul suhu dan kelembaban. Oleh karena itu, maka suhu awal 54°C dan depresi suhu bola basah 4°C serta suhu akhir 80°C dipilih sebagai kondisi proses pengerengan. Skedul ini baru prediksi, untuk skedul sebenarnya perlu dilakukan pengujian dengan contoh uji yang lebih besar, sehingga skedul yang ditetapkan akan lebih akurat.

3. Penentuan kadar air pada setiap langkah proses pengerengan.

Nilai kadar air awal rata-rata sampel adalah 103,45%. Berdasarkan klasifikasi kadar air yang dibuat oleh Terazawa (1965) sebagaimana ditampilkan pada Tabel 3. Tingkat kadar air awal 103,45% ini berkonsekuensi pada terpilihnya kelas F sebagai

Tabel 2. Hubungan antara jenis cacat dan suhu awal, depresi dan suhu akhir

<table>
<thead>
<tr>
<th>Variasi Cacat</th>
<th>Kondisi Pengerengan (°C)</th>
<th>Tingkat cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Retak Awal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu Awal</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>Depresi Suhu Bola Basah</td>
<td>6,5</td>
<td>5,5</td>
</tr>
<tr>
<td>Suhu Akhir</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Deformasi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu Awal</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>Depresi Suhu Bola Basah</td>
<td>6,5</td>
<td>6,0</td>
</tr>
<tr>
<td>Suhu Akhir</td>
<td>93</td>
<td>88</td>
</tr>
<tr>
<td>Retak-Dalam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu Awal</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>Depresi Suhu Bola Basah</td>
<td>6,5</td>
<td>4,5</td>
</tr>
<tr>
<td>Suhu Akhir</td>
<td>95</td>
<td>83</td>
</tr>
</tbody>
</table>
Tabel 3. Klasisifikasi kadar air dan langkah perubahannya

<table>
<thead>
<tr>
<th>Langkah</th>
<th>Klasifikasi Kadar Air Berdasarkan Kadar Air Awal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>40-30</td>
</tr>
<tr>
<td>2</td>
<td>30-28</td>
</tr>
<tr>
<td>3</td>
<td>28-26</td>
</tr>
<tr>
<td>4</td>
<td>26-24</td>
</tr>
<tr>
<td>5</td>
<td>24-22</td>
</tr>
<tr>
<td>8</td>
<td>18-16</td>
</tr>
<tr>
<td>9</td>
<td>16-14</td>
</tr>
<tr>
<td>10</td>
<td>14-12</td>
</tr>
<tr>
<td>11</td>
<td>≤ 12</td>
</tr>
</tbody>
</table>

penyusun skedul suhu dan kelembaban.

Kelas F untuk kadar air ini terdiri atas langkah-langkah penurunan berikut: 120-68; 68-55; 55-45; 45-38; 38-32; 32-27; 27-22; 22-18; 18-14; 14-12; dan kurang dari 12% sebagai langkah akhir pada proses pengeringan.

4. Penentuan depresi suhu bola basah

5. Penentuan perubahan suhu selama proses pengeringan.

Berdasarkan sampel pengeringan, diperoleh suhu awal pada termometer bola kering adalah 54°C dan suhu akhir adalah 80°C. Untuk menentukan perubahan suhu selama proses pengeringan, diperlukan Klasisifikasi Suhu Awal dan Perubahannya selama Pengerengan yang dibuat oleh Terazawa (1965) sebagai slama disajikan pada Tabel 5.

Berdasarkan klasifikasi suhu pada Tabel 5, maka wilayah suhu antara suhu awal 54°C dan akhir 80°C ini berkonsekuensi pada pemilihan kolom suhu T5

Tabel 4. Klasisifikasi depresi suhu bola basah dan langkah perubahannya

<table>
<thead>
<tr>
<th>Langkah</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td>3</td>
<td>3,5</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3,8</td>
<td>4,5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4,5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>4,5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>21</td>
<td>19</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
Tabel 5. Klasifikasi Suhu Awal dan Langkah Perubahannya

<table>
<thead>
<tr>
<th>Perubahan Kadar Air (%)</th>
<th>Klasifikasi Suhu Awal (°C) dan Perubahannya selama Pengeringan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>Segar-40</td>
<td>35</td>
</tr>
<tr>
<td>40-35</td>
<td>35</td>
</tr>
<tr>
<td>35-30</td>
<td>35</td>
</tr>
<tr>
<td>30-25</td>
<td>35</td>
</tr>
<tr>
<td>25-20</td>
<td>38</td>
</tr>
<tr>
<td>20-15</td>
<td>40</td>
</tr>
<tr>
<td>15-12</td>
<td>45</td>
</tr>
<tr>
<td><12</td>
<td>55</td>
</tr>
</tbody>
</table>

untuk mengekspresikan perubahan suhu selama proses pengeringan. Langkah-langkah perubahan suhu ini sebagai berikut: 54, 55, 55, 58, 63, 68, 70, 70-80, 70-80.

6. Pendugaan durasi pengeringan

Untuk mencapai kadar air 1%, pengeringan sampel memerlukan waktu selama 36 jam. Berdasarkan grafik hubungan antara durasi pengeringan di dalam oven berlistrik dan durasi pengeringan di dalam tanur pengering konvensional yang dibuat oleh Terazawa (1965), waktu selama 36 jam untuk mencapai kadar air 1% ini akan menunjuk pada estimasi durasi pengeringan di dalam tanur pengering konvensional selama 8,5 hari. Sementara itu, berdasarkan pada depresi suhu bola basah yang sebesar 4,0°C ini bagi sampel pengeringan, maka durasi pengeringan di dalam tanur pengering konvensional menurut Terazawa (1965) adalah 8 hari. Berdasarkan kedua angka durasi tersebut, maka durasi pengeringan rata-rata diperkirakan selama (8,5 + 8)/2 = 8,25 hari.

7. Perumusan skedul suhu dan kelembaban

Berdasarkan beberapa kriteria sebagaimana diperikan di atas, skedul suhu dan kelembaban bagi kayu durian yang berdimensi tebal 55 mm dan lebar 195 mm dapat dirumuskan dengan kode T5F6. Penampilan skedul suhu dan kelembaban T5F6 ini disajikan pada Tabel 6.

Tabel 6. Skedul Suhu dan Kelembaban berkorder T5F6

<table>
<thead>
<tr>
<th>Langkah</th>
<th>Kadar Air (%)</th>
<th>Suhu Termometer Bola Kering (°C)</th>
<th>Depresi Suhu Termometer Bola Basah (°C)</th>
<th>Suhu Termometer Bola Basah (°C)</th>
<th>Kelembaban Relatif (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120 - 68</td>
<td>54</td>
<td>4</td>
<td>51</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>68 - 55</td>
<td>55</td>
<td>6</td>
<td>48</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>55 - 45</td>
<td>55</td>
<td>9</td>
<td>46</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>45 - 38</td>
<td>55</td>
<td>14</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>38 - 32</td>
<td>58</td>
<td>18</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>32 - 27</td>
<td>63</td>
<td>25</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>27 - 22</td>
<td>68</td>
<td>30</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>22 - 18</td>
<td>68</td>
<td>30</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>18 - 14</td>
<td>70</td>
<td>40</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>14 - 12</td>
<td>70</td>
<td>40</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>< 12</td>
<td>70-80</td>
<td>40-50</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
KESIMPULAN DAN SARAN

Penelitian terhadap kayu durian gergajian bersortimen tebal 55 mm dan lebar 195 mm menyimpulkan bahwa kayu ini memiliki nilai kadar air awal 103,45%, berat jenis 0,48, penyusutan lebar 1,57% dan penyusutan tebal 5,95%. Pengerangan kayu tersebut di dalam tanur pengereng konvensional dilakukan dengan penetapan skedul suhu dan kelembaban. Skedul suhu dan kelembaban secara teoritis dicirikan oleh kondisi sebagai berikut: (1) suhu awal 54°C dan diakhiri pada suhu akhir 80°C. (2) Depresi suhu termometer bola basah pada awal pengerengan 4°C dan akhir pengerengan 30°C. Skedul suhu dan kelembaban demikian diberi kode T5F6. Kelembaban relatif pada awal pengerengan 80% dan akhir pengerengan 12%. Durasi pengerengan diperkirakan 8,25 hari.

Skedul suhu dan kelembaban hasil perumusan secara teoritis ini merupakan skedul yang disarankan untuk diterapkan pada kesempatan pertama pada proses pengerengan kayu durian dengan karakter sebagaimana disajikan. Skedul suhu dan kelembaban yang paling tepat dan akurat dapat dirumuskan melalui aktivitas-aktivitas lebih lanjut yang bersifat siklis dengan empat tahapan sebagai berikut: (1) evaluasi hasil pengerengan atas penerapan skedul teoritis ini, (2) pengkoreksian aspek suhu, dan/atau depresi suhu, (3) perumusan skedul baru sebagai hasil revisi yang pertama, (4) penerapan skedul hasil revisi pertama. Melalui empat aktivitas yang dilakukan secara siklis tersebut, maka skedul suhu dan kelembaban yang paling tepat bagi kayu durian ini dapat ditemukan.

DAFTAR PUSTAKA