Pemanfaatan Persistent Scatterer Interferometry Synthetic Aperture Radar (PSInSAR) Untuk Mengidentifikasi Laju Deformasi Permukaan di Lapangan Panas Bumi Ulubelu

https://doi.org/10.22146/jgise.66896

I Gede Boy Darmawan(1*), Karyanto Karyanto(2)

(1) Universitas Lampung
(2) Universitas Lampung
(*) Corresponding Author

Abstract


Lapangan panas bumi Ulubelu telah diekstraksi sejak tahun 2012 dengan menghasilkan 2 x 55 MW dari PLTP unit 1 & 2 dan meningkat menjadi 4 x 55 MW sejak tahun 2016 dengan beroperasinya unit 3 dan unit 4. Peningkatan eksploitasi energi panas bumi di Ulubelu berpotensi menimbulkan perubahan kondisi geologi dan lingkungan yang salah satunya adalah subsiden. Penelitian ini bertujuan untuk mengidentifikasi potensi laju deformasi permukaan memanfaatkan metode Persistent Scatterer Interferometry Synthetic Aperture Radar (PSInSAR) di lapangan panas bumi Ulubelu. Sebanyak 49 data Sentinel-1 periode Oktober 2014 hingga Maret 2020 dengan mode descending telah diolah dan dianalisis menggunakan tiga software utama yaitu SNAP, StaMPS dan StaMPS-Visualizer. Pembentukan interferogram pada setiap pasangan data (image pair) antara master dengan seluruh slave dilakukan menggunakan SNAP. Seluruh data interferogram kemudian diexport sebagai input data StaMPS untuk mendapatkan nilai piksel yang memiliki koherensi terbaik dan persistent. Hasil pengolahan menunjukkan laju deformasi per titik persistent scatterer (PS) berkisar antara -7,3 hingga +7,5 mm/tahun relatif pada arah Line of Sight (LOS) tanpa validasi lapangan. Pola deformasi berupa penurunan muka tanah berada di sekitar area eksploitasi panas bumi, sedangkan kenaikan muka tanah (uplift) terdeteksi di luar area eksploitasi. Hasil analisis menunjukkan bahwa kesamaan laju deformasi pada PLTP unit 1 & 2 dengan PLTP unit 3 & 4 mengindikasikan proses subsiden di area Ulubelu didominasi oleh proses ekstraksi fluida panas bumi. Temuan ini juga memperkuat penelitian sebelumnya yang menunjukkan bahwa proses subsiden di area panas bumi Ulubelu disebabkan oleh pemadatan batuan alterasi.

Keywords


Deformasi, Panas bumi, PSInSAR, Subsiden, Ulubelu

Full Text:

PDF


References

Agustan. (2010). Ground deformation detection based on ALOS-PALSAR data utilizing DInSAR technique in Indonesia. PhD Thesis, Nagoya University.

Akbari, D., & Saepuloh, A. (2016). Identification of Surface Manifestation at Geothermal Field Using SAR Dual Orbit Data. IOP Conference Series: Earth and Environmental Science, 42(1). https://doi.org/10.1088/1755-1315/42/1/012001

Ashat, A., & Ardiasyah, F. (2012). Igniting the Ring of Fire, a Vision for Developing Indonesia’s Geothermal Power (WWF report).

Bloomer, A., & Currie, S. (2001). Effects of geothermal induced subsidence. Proceedings 23rd NZ Geothermal Workshop, 3–8.

Cahyono, Y. D. (2017). The Assessment of Steam Above Ground System of Unit-1 and Unit-2 Ulubelu Geothermal Field, Indonesia, After 5 Years of Operation.

Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: A review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 115). https://doi.org/10.1016/j.isprsjprs.2015.10.011

Dai, K., Li, Z., Tomás, R., Liu, G., Yu, B., Wang, X., Cheng, H., Chen, J., & Stockamp, J. (2016). Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sensing of Environment, 186. https://doi.org/10.1016/j.rse.2016.09.009

Darmawan, I. G. B., Manurung, Z. K., Nurul, M., Prihadita, W. P., & Karyanto. (2021). Aplikasi DInSAR Untuk Identifikasi Deformasi Permukaan Gunung Anak Krakatau Pada Peristiwa Longsor Sebelum Tsunami Selat Sunda. Jurnal Geosaintek, 7(2), 83. https://doi.org/10.12962/j25023659.v7i2.8988

Das, A., Agrawal, R., & Mohan, S. (2015). Topographic correction of ALOS-PALSAR images using InSAR-derived DEM. Geocarto International, 30(2), 145–153. https://doi.org/10.1080/10106049.2014.883436

Esfahany, S. S. (2008). Improving Persistent Scatterer Interferometry results for Deformation Monitoring, Case study on the Gardanne mining site. Master Thesis, Delft University of Technology.

Eysteinsson, H. (2000). Elevation and gravity changes at geothermal fields on the Reykjanes Peninsula, SW Iceland. World Geotermal Congress, 559–564.

Ferretti, A., Monti-guarnieri, A., Prati, C., Rocca, F., & Massonnet, D. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. In ESA Publications.

Giriarso, J. P., Puspadianti, A., Mulyanto, & Dradjat B. Hartanto, E. E. S. (2015). Initial Geochemical Monitoring Ulubelu Geothermal Field. World Geotermal Congress, 1–8.

Harsoprayitno, S. (2009). Geothermal development in Indonesia. Asia Pacific Economic Forum (APEC) Energy Working Group (EWG) 38.

Hooper, A., Bekaert, D., Hussain, E., & Spaans, K. (2018). StaMPS/MTI Manual Version 4.1b. School of Earth and Environment, University of Leeds.

Hooper, A., Bekaert, D., Spaans, K., & Arikan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. In Tectonophysics (Vol. 514–517, hal. 1–13). https://doi.org/10.1016/j.tecto.2011.10.013

Höser, T. (2018). Analysing the Capabilities and Limitations of InSAR using Sentinel-1 data for Landslide Detection and Monitoring. Master Thesis, University of Bonn.

Husein, S., Setianto, A., Nurseto, S. T., & Koestono, H. (2015). Tectonic Control to Geothermal System of Way Panas, Lampung, Indonesia. World Geotermal Congress, 1–12.

Jo, M. J., Jung, H. S., & Yun, S. H. (2017). Retrieving Precise Three-Dimensional Deformation on the 2014 M6.0 South Napa Earthquake by Joint Inversion of Multi-Sensor SAR. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06018-0

Junisbekova, V., Filatov, A., Kuznetsova, I., & Yelisseyeva, A. (2016). SAR Interferometry Technique for Ground Deformation Assessment on Karazhanbas Oilfield. Procedia Computer Science, 100. https://doi.org/10.1016/j.procs.2016.09.271

Lesko, M., Papco, J., Bakon, M., & Liscak, P. (2018). Monitoring of natural hazards in Slovakia by using of satellite radar interferometry. Procedia Computer Science, 138. https://doi.org/10.1016/j.procs.2018.10.053

Mossop, A., & Segall, P. (1997). Subsidence at The Geysers geothermal field, N. California from a comparison of GPS and levelling surveys. Geophysical Research Letters, 224, 1839–1843.

Mubarok, M. H., & Zarrouk, S. J. (2016). Steam-Field Design Overview of The Ulubelu Geothermal Project, Indonesia. Proceedings 38th New Zealand Geothermal Workshop, 1–6.

Mulyanto, Puspadianti, A., Giriarso, J. P., & Hartanto, D. B. (2015). The Initial-State Geochemistry as a Baseline for Geochemical Monitoring at Ulubelu Geothermal Field, Indonesia. World Geotermal Congress, 1–5.

Razi, P., Sri Sumantyo, J. T., Perssin, D., & Munir, A. (2018). Persistent Scattering interferometry SAR based Velocity and acceleration analysis of land deformation: Case study on Kelok Sembilan bridge. Proceeding of 2017 11th International Conference on Telecommunication Systems Services and Applications, TSSA 2017, 2018-January. https://doi.org/10.1109/TSSA.2017.8272930

Santoso, D., Kadir, W. G. A., Sarkowi, M., Adriansyah, & Waluyo. (2004). Time-Lapse Microgravity Study for Reinjection Water Monitoring of Talang Jimar Field. Proceedings of The 7Th SEDJ International Symposium, Sendai-Japan, 497–502.

Sarkowi, M. (2013). Analisa Anomali 4D Microgravity Daerah Panasbumi Ulubelu Lampung Periode 2010 – 2013. Seminar Nasional Sains & Teknologi V.

Sarkowi, M., Kadir, W. G. A., & Santoso, D. (2005). Strategy of 4D Microgravity Survey for the Monitoring of Fluid Dynamics in Subsurface. World Geotermal Congress.

Siahaan, E. E., Sasradipoera, D. S., Silitonga, T. H., Pelmelay, C., Koestono, H., Mohamad, Mubarok, H., & Rifki, G. (2015). Success Development Drilling in Ulubelu Green Field in South Sumatra Based on Geological Structure Evidence, Generate 4X55MW. World Geotermal Congress, 1–9.

Stephens, K. J., Ebmeier, S. K., Young, N. K., & Biggs, J. (2017). Transient deformation associated with explosive eruption measured at Masaya volcano (Nicaragua) using Interferometric Synthetic Aperture Radar. Journal of Volcanology and Geothermal Research, 344. https://doi.org/10.1016/j.jvolgeores.2017.05.014

Sudiana, D., Rokhmatuloh, Rizkinia, M., Ardiansyah, Arief, R., Setiadi, B., Bayuaji, L., & Sri Sumantyo, J. T. (2014). Analysis of land deformation on slope area using PS InSAR. Case study: Malang area. IOP Conference Series: Earth and Environmental Science, 19(1). https://doi.org/10.1088/1755-1315/19/1/012011

Suharno. (2013). Reservoir Review of the Rendingan-Ulubelu-Waypanas (RUW) Geothermal Field, Lampung, Indonesia. GRC Transactions, 37, 471–478.

Suharno, & Danusaputro, H. (2005). The Reservoir of The Rendingan-Ulubelu-Waypanas Geothermal System. Berkala Fisika, 8(2), 69–74.

White, P. J., Lawless, J. V., Terzaghi, S., & Okada, W. (2005). Advances in Subsidence Modelling of Exploited Geothermal Fields. World Geotermal Congress.

Yuniar, D. M., Hastuti, P., & Silaban, M. (2015). Ulubelu, First Year Reservoir Monitoring. Proceedings World Geothermal Congress, 1–5.

Zaenudin, A., Darmawan, I. G. B., Armijon, Minardi, S., & Haerudin, N. (2018). Land subsidence analysis in Bandar Lampung City based on InSAR. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1080/1/012043

Zaenudin, A., Sofiadin, I. T., & Arief, R. (2020). Delineasi Subsiden Pada Zona Alterasi di Lapangan Panasbumi Ulubelu Berdasarkan Interferometry Synthetic Aperture Radar Time Series. Jurnal Geofisika Eksplorasi, 6(3), 190–196.

Zakaria, M. (2019). Analisa Proses Produksi Panas Bumi di PT Pertamina Geothermal Energi Area Ulubelu. Laporan Kerja Praktik, Universitas Pertamina.

Zhantayev, Z., Kurmanov, B., Bibosynov, A., Fremd, A., & Ivanchukova, A. (2014). Persistent Scatterers Interferometry Technique for Urban Subsidence Monitoring in Kazakhstan Republic. Procedia Technology, 16. https://doi.org/10.1016/j.protcy.2014.10.006



DOI: https://doi.org/10.22146/jgise.66896

Article Metrics

Abstract views : 1611 | views : 3130

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.