Vs30 Mapping and Soil Classification in The Southern Part of Kulon Progo Using Rayleigh Wave Ellipticity Inversion

https://doi.org/10.22146/jgise.39780

Bambang Sunardi(1*)

(1) Puslitbang BMKG
(*) Corresponding Author

Abstract


Shear wave velocity from the ground surface to a depth of 30 meters (Vs30) is a parameter to determine dynamic characteristics of the soil, which can be used to assess the level of seismic hazard. Thus, Vs30 mapping has an important role in seismic hazard mitigation efforts. Vs30 can be determined by Multichannel Analysis of Surface Waves (MASW) and Spatial Autocorrelation (SPAC) methods. A simpler alternative can be done by using Rayleigh wave ellipticity. The main objective of this research is to map Vs30 in the southern part of Kulon Progo using Rayleigh wave ellipticity inversion. In this study, Rayleigh wave ellipticity inversion was performed on 42 microtremor single measurement data, scattered in the southern part of Kulon Progo. The inversion results are used to estimate the value of Vs30 and classify the soil type at the measurement points, referring to SNI 1726:2012. A Vs30 distribution map and soil type classification are obtained by applying the geostatistical interpolation method. The mapping result showed that most of the southern part of Kulon Progo has a relatively low Vs30 value. These values are in the range of 180-342 m/s, which categorized as stiff soil (SD). In this region, some parts located in the hilly and transition zones have relatively high shear wave velocities in the range of 357-578 m/s and included in the category of very dense soil/ soft rock (SC) types

Full Text:

PDF


References

Afnimar (2009). Seismologi. ITB Bandung.

Aki, K., dan Richards, P.G. (1980). Quantitative Seismology. W. H. Freeman & Co., San Francisco.

Atashband, S., dan Esfahanizadeh, M. (2012). Effects Evaluation of Ambient Vibration Recodring Conditions on HVTFA Results. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.

Bappenas. (2006). Penilaian Awal Kerusakan dan Kerugian Bencana Alam di Yogyakarta dan Jawa Tengah. Bappenas.

BMKG, Pusat Gempabumi dan Tsunami. (2015). Katalog Gempabumi Merusak 1821-2014. BMKG Jakarta.

BNPB. (2018). Data Informasi Bencana Indonesia. http://bnpb.cloud/dibi/laporan4 (diakses 17 Juli 2018).

Boore, D.M., dan Toksoz, M.N. (1969). Rayleigh wave particle motion and crustal structure. Bull. seism. Soc. Am. 59, 331-346.

Hobiger, M., Cornou, C., Wathelet, M., Giulio, G.D., Endrun, B.K., dkk. (2013). Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophys. J. Int. 192, 207–229.

Humas DIY. (2018). Data dan Informasi Bencana oleh Humas DIY tanggal 28 November 2013. Humas DIY. https https://jogjaprov.go.id/berita/detail/data-dan-informasi-bencana (diakses 17 Juli 2018).

Husein, S., dan Srijono (2010). Peta Geomorfologi Daerah Istimewa Yogyakarta. Prosiding Simposium Geologi Yogyakarta, Yogyakarta, Indonesia, pp941-944.

Irfan, U. (2017). Near-surface characterization from the H/V spectral curves along with the joint inversion of the ellipticity and dispersion curves. Tesis, University of Sao Paulo.

Kanai, K., dan Tanaka, T. (1961). On Microtremors VIII. Bulletin of the Earthquake Research Institute 39, 97–114.

Kanli, A.I., Tildy, P., Pronay, Z., Pinar, A., Hermann, L. (2006). Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophysical Journal International 165, 223–235.

Konno, K., dan Ohmachi, T. (1998). Ground Motion Characteristics Estimated from Spectral Ratio beetwen Horizontal and Vertical Components of Microtremor. Bull. Seism. Soc. Am. 88, 228–241.

Lee, C. T., and Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci. 19 (6), 671-682.

Park Seismic LLC. (2018). How to Calculate Average Vs and Vs30m. http://www.parkseismic.com/SSC-HowToCalculateVs30m.html (diakses 1 Oktober 2018).

Poggi, V., Fah, D., Burjanek, J., Giardini, D. (2012). The use of Rayleigh‐wave ellipticity for site‐specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophysical Journal International 188 (3), 1154-1172.

Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm–II. Appraising the ensemble. Geophys. J Int. 138, 727-746.

SNI 1726:2012. (2012). Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung. http://sisni.bsn.go.id/index.php?/sni_main/sni/detail_sni/14568 (diakses 17 Juli 2018).

Sunardi, B., Putri, E.N., Susilanto, P. dan Ngadmanto, D. (2017). Penerapan metode inversi HVSR untuk pencitraan 3-D kecepatan gelombang geser (Vs) di Kulon Progo bagian selatan. Jurnal Riset Geofisika Indonesia. 1, 47-53.

Wills, C. J., Petersen, M. D., Bryant, W. A., Reichle, M., Saucedo, G. J., Tan, S., Taylor, G., and Treiman, J. (2000). A Site Conditions Map for California Based on Geology and Shear Wave Velocity. Bull. Seism. Soc. Am. 90 (6), S187–S208.



DOI: https://doi.org/10.22146/jgise.39780

Article Metrics

Abstract views : 348 | views : 502

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Geospatial Information Science and Engineering (JGISE)

Creative Commons License
The Articles and Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2623-1182 (Online)
Jl. Grafika No.2 Kampus UGM, Yogyakarta 55281
Email : jgise.ft@ugm.ac.id