Pengaruh Densitas Topografi Terhadap Ketelitian Model Geoid: Studi kasus Pulau Sulawesi
Leni Sophia Heliani(1*), Hendra Noviantara(2)
(1) Department of geodetic Engineering, Universitas Gadjah Mada
(2) Department of geodetic Engineering, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Abbak, R. A. (2020). Effect of a high-resolution global crustal model on gravimetric geoid determination: A case study in a mountainous region. Studia Geophysica et Geodaetica, 64(4), 436–451. https://doi.org/10.1007/s11200-020-1023-z
Abbak, R. A., Erol, B., & Ustun, A. (2012). Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Computers and Geosciences, 48, 31–40. https://doi.org/10.1016/j.cageo.2012.05.019
Abbak, R. A., Sjöberg, L. E., Ellmann, A., & Ustun, A. (2012). A precise gravimetric geoid model in a mountainous area with scarce gravity data: A case study in central Turkey. Studia Geophysica et Geodaetica, 56(4), 909–927. https://doi.org/10.1007/s11200-011-9001-0
Abbak, R. A., & Ustun, A. (2015). A software package for computing a regional gravimetric geoid model by the KTH method. Earth Science Informatics, 8(1), 255–265. https://doi.org/10.1007/s12145-014-0149-3
Andersen, O. B., & Knudsen, P. (2019). The DTU17 Global Marine Gravity Field: First Validation Results. Dalam S. P. Mertikas & R. Pail (Ed.), Fiducial Reference Measurements for Altimetry (Vol. 150, hlm. 83–87). Springer International Publishing. https://doi.org/10.1007/1345_2019_65
Baillie, P., & Decker, J. (2022). Enigmatic Sulawesi: The tectonic collage. Berita Sedimentologi, 48(1), 1–30. https://doi.org/10.51835/bsed.2022.48.1.388
Daras, I., Fan, H., Papazissi, K., & Fairhead, J. D. (2010). Determination of a Gravimetric Geoid Model of Greece Using the Method of KTH. Dalam S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation (Vol. 135, hlm. 407–413). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_54
Ecker, E., & Mittermayer, E. (1969). Gravity corrections for the influence of the atmosphere. Boll Geofis Teor Appl, 11, 70–80.
Ellmann, A., & Sjöberg, L. (2004). Ellipsoidal correction for the modified Stokes formula. Boll Geod Sci Aff, 63.
Foroughi, I., Vaníček, P., Kingdon, R. W., Goli, M., Sheng, M., Afrasteh, Y., Novák, P., & Santos, M. C. (2019). Sub-centimetre geoid. Journal of Geodesy, 93(6), 849–868. https://doi.org/10.1007/s00190-018-1208-1
Gatti, A., Reguzzoni, M., Migliaccio, F., & Sansò, F. (2016). Computation and assessment of the fifth release of the GOCE-only space-wise solution. https://doi.org/10.13140/RG.2.2.28625.94569
Harkness, W. (2012). The Solar Parallax and Its Related Constants: Including the Figure and Density of the Earth. Nabu Press.
Heiskanen, W. A., & Moritz, H. (1967). Physical geodesy. Bulletin géodésique, 86(1), 491–492. https://doi.org/10.1007/BF02525647
Heliani, L. S. (2016). Evaluation of global geopotential model and its application on local geoid modelling of Java Island, Indonesia. AIP Conference Proceedings. https://doi.org/10.1063/1.4958534
Hofmann-Wellenhof, B., & Moritz, H. (2005). Physical geodesy. Dalam Physical Geodesy. https://doi.org/10.1007/b139113
Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical geodesy (Second, corrected edition). Dalam Physical Geodesy (Second, corrected edition). https://doi.org/10.1007/978-3-211-33545-1
Karaaslan, Ö., Tanır Kayıkçı, E., & Aşık, Y. (2016). Comparison of local geoid height surfaces, in the province of Trabzon. Arabian Journal of Geosciences, 9(6), 431. https://doi.org/10.1007/s12517-016-2470-2
Muhammad, S., & Zulfiqar, A. (2015). An optimal approach for the development of precise regional geoid in Pakistan through a comparative study with least square collocation and FFT techniques. Arabian Journal of Geosciences, 8(9), 7481–7498. https://doi.org/10.1007/s12517-014-1693-3
Nugraha, A. M. S., Hall, R., & BouDagher-Fadel, M. (2022). The Celebes Molasse: A revised Neogene stratigraphy for Sulawesi, Indonesia. Journal of Asian Earth Sciences, 228, 105140. https://doi.org/10.1016/j.jseaes.2022.105140
Pahlevi, A., Syafarianty, A., Susilo, S., Lumban-Gaol, Y., Putra, W., Triarahmadhana, B., Bramanto, B., Muntaha, R., El Fadhila, K., Ladivanov, F., Amrossalma, H., Islam, L., Novianto, D., Huda, S., Wismadi, T., Efendi, J., Ramadhan, A., Wijaya, D., Prijatna, K., & Pramono, G. (2024). Geoid Undulation Model as Vertical Reference in Indonesia. Scientific Data, 11(1), 822. https://doi.org/10.1038/s41597-024-03646-w
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), 2011JB008916. https://doi.org/10.1029/2011JB008916
Sakil, F. F., Erol, S., Ellmann, A., & Erol, B. (2021). Geoid modeling by the least squares modification of Hotine’s and Stokes’ formulae using non-gridded gravity data. Computers & Geosciences, 156, 104909. https://doi.org/10.1016/j.cageo.2021.104909
Schwarz, K. P., Sideris, M. G., & Forsberg, R. (1990). The use of FFT techniques in physical geodesy. Dalam Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.1990.tb00701.x
Sheng, M., Shaw, C., Vanicek, P., Kingdon, R. W., Santos, M. C., & Foroughi, I. (2018). Introducing UNB’s High-Resolution Global Laterally Varying Topographical Density Model. 2018, G51F-0538. AGU Fall Meeting Abstracts.
Sjöberg, L. E. (1999). The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. Journal of Geodesy, 73(7), 362–366. https://doi.org/10.1007/s001900050254
Sjöberg, L. E. (2003a). A general model for modifying Stokes’ formula and its least-squares solution. Journal of Geodesy, 77(7–8), 459–464. https://doi.org/10.1007/s00190-003-0346-1
Sjöberg, L. E. (2003b). A solution to the downward continuation effect on the geoid determined by Stokes’ formula. Journal of Geodesy, 77(1–2), 94–100. https://doi.org/10.1007/s00190-002-0306-1
Sjöberg, L. E. (2007). The topographic bias by analytical continuation in physical geodesy. Journal of Geodesy, 81(5), 345–350. https://doi.org/10.1007/s00190-006-0112-2
Sjöberg, L. E., Gidudu, A., & Ssengendo, R. (2015). The Uganda gravimetric geoid model 2014 computed by the KTH method. Journal of Geodetic Science. https://doi.org/10.1515/jogs-2015-0007
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10), 1847–1864. https://doi.org/10.1029/2019EA000658
Yilmaz, N. (2024). Impact of the UNB topographical density model on precise geoid determination in the high mountainous region. Survey Review, 1–8. https://doi.org/10.1080/00396265.2024.2379653
DOI: https://doi.org/10.22146/jgise.102122
Article Metrics
Abstract views : 460 | views : 203Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.