Bathymetric Mapping of Shallow Water Using Aerial Images With Structure-From-Motion Approach: A Case Study Of Kepulauan Seribu Water, Dki Jakarta
Teguh Sulistian(1*), Herjuno Gularso(2), Dewi Sekar Arum(3), Sandi Aditya(4), Fajar Triady Mugiarto(5)
(1) Badan Informasi Geospasial (Geospatial Information Agency)
(2) Badan Informasi Geospasial (Geospatial Information Agency)
(3) Badan Informasi Geospasial (Geospatial Information Agency)
(4) Badan Informasi Geospasial (Geospatial Information Agency)
(5) Badan Informasi Geospasial (Geospatial Information Agency)
(*) Corresponding Author
Abstract
Bathymetric mapping is crucial for marine spatial planning and coastal infrastructure development. However, shallow waters with depths ranging from 0 to 5 meters are considered critical areas that pose dangers to conventional survey vessels. This research examines a bathymetric mapping method for the shallow waters of Kepulauan Seribu, Jakarta, using aerial images captured by an unmanned aerial vehicle (UAV) with a structure-from-motion (SfM) approach. Furthermore, the point cloud must be corrected for the refractive index since light passes through both air and water. The seawater refractive index is derived from salinity and seawater temperature data. The validation process uses several independent control points (ICPs) obtained from GNSS real-time kinematic (RTK) measurements and soundings conducted with an unmanned surface vessel (USV). The accuracy assessment shows that the SfM point cloud data has a horizontal RMSE of 0.103 m and a vertical RMSE of 0.191 m. The aerial image approach significantly speeds up the acquisition process compared to conventional sounding methods and produces a higher density of point clouds, integrating the coastal digital elevation model (DEM) of both land and sea areas. However, the use of this method is limited to clear waters where the seabed is visible in the images.
Keywords
Full Text:
PDFReferences
Awadallah, M.O.M. (2021). Comparison between the Green and the Red LiDAR terrain models in flood inundation estimations. Master’s thesis of Mahmoud Omer Mahmoud Awadallah at Norwegian University of Science and Technology, Department of Civil and Environmental Engineering.
Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3):346–359.doi: 10.1016/j.cviu.2007.09.014.
Dietrich, J.T. (2016). py_sfm_depth homepage. http://github.com/geojames/py_sfm_depth.
Dietrich, J.T. (2017). Bathymetric structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms 42(2):355–364. doi:10.1002/esp.4060.
Gularso, H., Parapat, A.D., Sulistian, T., Atmaja, A.A. (2021). Penentuan Garis Pantai Menggunakan Foto Udara Dari Wahana Tanpa Awak: Studi Kasus Pantai Ujong Batee Aceh [Determination of Shoreline Using Unmanned Aerial Vehicle: Case Study Ujong Batee Aceh Beach]. National Seminar of Geomatica 2021. DOI: 10.24895/SNG.2020.0-0.1185.
International Hydrographic Organization. (2022). Standards for Hydrographic Surveys (S-44 Edition 6.1.0). Retrieved from https://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.1.0.pdf
Lingua, A.M., Maschio, P., Spadaro, A., Vezza, P., Negro, G. (2023). Iterative Refraction-Correction Method On Mvs-Sfm for Shallow Stream Bathymetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy.
Lowe, D.G. (2004). Distinctive Image Features from Scale Invariant Keypoints. International Journal of Computer Vision 60(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94.
Matsuba, Y., and S. Sato. (2018). Nearshore bathymetry estimation using UAV. Coastal Engineering Journal 60(1):51–59. doi:10.1080/21664250.2018.1436239.
McNeil ., G.T. (1977). Metrical fundamentals of underwater lens system. Opt. Eng. 16, 128–139 119772.
Nugraha, W., Parapat, A.D., Arum, D.S., & Istighfarini, F. (2018). GNSS RTK application to determine coastline case study at Northern Area of Sulawesi and Gorontalo. E3S Web Conf., 94 (01016), 1-7. International Symposium on Global Navigation Satellite System 2018 (ISGNSS 2018). Bali. https://doi.org/10.1051/e3sconf/20199401016.
Papakonstantinou, A., K. Topouzelis, and G. Pavlogeorgatos. (2016). Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. International Journal of Geo-Information.
Pratiwi, D.M. (2016). Analisis Hasil Pengukuran Posisi Horizontal Kapal USV “Arossel” (Autonomous Remotely Operated Surface Vessel) Mengacu Standar IHO Untuk Pemetaan Batimetri Skala Besar [Analysis of Horizontal Position Measurement Results on USV “Arossel” (Autonomous Remotely Operated Surface Vessel) refer to IHO standard for Large Bathymetry Mapping]. Undergraduate thesis Gadjah Mada University. Yogyakarta.
Safi’i, A.N. (2018). Akurasi Pengukuran GPS Metode RTK-NTRIP Menggunakan CORS BIG [Accuracy of GPS Measurement RTK-NTRIP Method Using BIG CORS]. National Seminar of Geomatica 2018. DOI: 10.24895/SNG.2017.2-0.441.
Slocum, R.K. (2020). Source Code at https://github.com/hokiespurs/sfmrefract.git.
Slocum, R.K., W. Wright, C. Parrish, B. Costa, M. Sharr, and T.A. Battista. (2019). Guidelines for Bathymetric Mapping and Orthoimage Generation using sUAS and SfM, An Approach for Conducting Nearshore Coastal Mapping. NOAA Technical Memorandum NOS NCCOS 265. Silver Spring, MD. 83 pp. doi:10.25923/07mx-1f93.
Storlazzi, C.D., Dartnell, P., Hatcher, G.A., Gibbs, A.E. (2016). End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs (2016) 35:889–894.https://doi.org/10.1007/s00338-016-1462-8
Syetiawan, A., H. Gularso, G. I. Kusnadi and G. N. Pramudita. (2020). Precise Topographic Mapping Using Direct Georeferencing in UAV. The Fifth International Conferences of Indonesia Society for Remote Sensing.
Terama, E., Peltomaa, J., Mattinen-Yuryev, M and Nissinen, A. (2019). Urban Sustainability and the SDGs: A Nordic Perspective and Opportunity for Integration. Urban Sci. 2019, 3, 69; doi:10.3390/urbansci3030069.
Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564. https://doi.org/10.1029/2019GC008515.
Woodget AS, Carbonneau PE, Visser F, Maddock IP. 2015. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms 40: 47–64. DOI:10.1002/esp.36.
DOI: https://doi.org/10.22146/jgise.102075
Article Metrics
Abstract views : 157 | views : 81Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.