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ABSTRACT 
Floods are hydro-meteorological events that could impact economic losses and threaten human life and it’s categorized as the 
enormous disaster potential for global destruction. Floods occur because water overflows in potential areas due to exceeding the 
river's capacity. Flood modelling is the key in reducing the impact of losses resulting from flood disasters. Satellite-based rainfall data 
provides data with spatial and temporal distribution that has the potential to be an alternative as input in flood modelling. The 
availability of satellite rainfall data as input for flood modelling certainly requires an assessment of the modelling results' accuracy 
level. This research aims to investigate the performance of flood inundation modelling using CHIRPS data. The accuracy value of flood 
modelling results is calculated by comparing flood modelling results through Snyder-Alexejev synthetic unit hydrograph discharge 
calculations, which are then applied to 2D flood hydraulic modelling using HEC-RAS. The findings indicate that as an alternative to 
rainfall station data to model flood inundation, Chirps data have a level of accuracy that can be considered. Even though there are 
differences in the extent and depth of flood inundation between CHIRPS data and observation rainfall stations data, the results of 
modelling with CHIRPS data can contribute to mapping potential flood-prone areas. 
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1. Introduction 

Flood is a phenomenon characterized by the 
overflow of water beyond its capacity impacted by 
various factors such as intense precipitation, the ability 
of soil infiltration, the topographic condition, and land 
cover pattern within the water catchment region. 
Floods are classified as hydro-meteorological disasters 
with significant destructive potential on a global scale 
(Sarkar & Mondal, 2020). Rainfall events characterized 
by prolonged duration and heightened intensity have 
the potential to result in the overflow of water beyond 
the confines of rivers (Cheng et al., 2021). Moreover, 
another significant consideration is the soil's capacity 
for infiltration, which refers to its ability to absorb and 
accommodate the volume of water from precipitation 
(Hong et al., 2014). Digital Elevation Model (DEM) is a 
significant factor in determining the distribution of 
flood zones, as it represents the topographical 
conditions of the earth's surface (Sahid et al., 2018). 

According to the findings of the study, land-use change 
represent an additional contributing element to the 
occurrence of flooding, since they have the potential to 
diminish the discharge of surface water  (Sushanth, K., 
& Bhardwaj, 2019). 

A flood event poses a significant impact to human life 
and economic losses, hence classifying as a disaster. 
According to report from the National Agency of 
Disaster Risk Reduction (2021), Bandar Lampung City 
situated within the Lampung province determined as 
high disaster risk index which is one of the high hazard 
index is flood. According to data in 2022, Bandar 
Lampung has struck 29 flood disasters (BNPB, 2023). In 
addition, over 15 years from 2008 to 2022 Lampung 
province has significant infrastructure damaged about 
12198 houses due to the flood impact, and 
approximately 2215 houses losses in Bandar Lampung, 
with the most severe occurred in 2008 impacted to 
1234 houses (BNPB, 2023). In addition to the physical 
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destruction to infrastructure, flood catastrophes can 
also have enduring impacts on both physical and 
psychological well-being, including post-traumatic 
conditions (A. K. Carra, 2017; Fernandez et al., 2015; 
Stephenson et al., 2014). 

Given the significant ramifications associated with 
flood calamities, it is imperative to undertake flood 
hazard modelling as a means of mitigating the risks 
involved. This approach facilitates the identification of 
areas susceptible to flooding. The outcomes of this 
modelling endeavor can be effectively employed to 
establish flood hazard zoning, which in turn can be 
utilized for the purposes of mitigating potential risks, 
issuing early evacuation alerts, identifying secure flood-
prone areas, and enhancing community preparedness 
and response mechanisms in the face of flood incidents 
(B. K. Singh, 2014; Zope et al., 2016; Pratiwi & Santosa, 
2021). Numerous academics have conducted flood 
hazard modelling utilizing the integration of Remote 
Sensing (RS) technologies with Geographic Information 
Systems (GIS). The study conducted by Hiệu et al., 
(2013) employed SPOT 6 Satellite Imagery in a 
temporal resolution to ascertain flood inundation zones 
by examining the visual changes that occurred prior 
and after to the flood event. Various study also 
conducted to simulate the flood inundation utilized two 
dimensions (2D) model, it achieved through the 
integration of hydraulic modelling with Geographic 
Information Systems (GIS) (Brunner et al., 2015; 
Khattak et al., 2016; Parsa et al., 2013; Vozinaki et al., 
2017). 

The primary input for flood modelling is 
precipitation data. Generally, the main source of the 
precipitation data used for flood modelling are 
observational rainfall data from rainfall station (Cheng 
et al., 2021; Islam, 2020; Sarkar & Mondal, 2020; 
Santosa et al., 2010). The requirement for extended-
duration rain data and spatial distribution rainfall 
station its associated high costs can be attributed to the 
implementation of Government Regulation Number 47 
of 2018, which pertains to the categorization and tariffs 
for non-tax state revenue types applicable to the 
Meteorology, Climatology, and Geophysics Agency 
(BMKG), as well as the provision of observation stations 
across various regions. The primary challenge in 
modelling flood hazard is precipitation detailed to daily 
rainfall data. In order to face the challenge due to the 
observational rain data from rainfall station, satellite-
derived precipitation data can serve as a viable 
alternative. Numerous scholars have conducted 
comparative analyses on the dependability of satellite-
derived precipitation data in relation to observed 
precipitation data. Ramly et al., (2020) conducted flood 
modelling simulation by utilizing rainfall data obtained 
from RAIN RATE AUTO V2. The result shows favorable 
outcomes with error percentages that were deemed 

acceptable. The utilization of rain intensity data derived 
from satellite sources enables the comparison of flood 
simulation outcomes and hydrographs obtained from 
flood occurrences, as demonstrated in previous studies 
(Ozkaya & Akyurek, 2019; Yucel, 2015). The reliability 
of rain data derived from the GSMaP, TRMM, GPM, and 
PERSIANN satellites is comparable to that of 
observational rain data (Asferizal, 2022). 

The utilization of Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) rainfall data as an 
alternate input data for flood modelling still needs to be 
improved. Limited data access and the sparse 
availability of rainfall data from conventional rainfall 
stations highlight CHIRPS rain data as a viable 
alternative input for flood inundation modelling. Using 
satellite rainfall data has successfully addressed issues 
related to regional coverage and data completeness in 
flood modelling. This research aims to investigate the 
accuracy of flood modelling results obtained through 
hydraulic modelling techniques using a combination of 
HEC-RAS and GIS applications utilizing CHIRPS rainfall 
data. The assessment focuses on the comparison of two 
rainfall source data, namely from CHIRPS and rainfall 
station over Way Garuntang watershed. 

2. Data and Methods 

2.1. Study Area 
The study is located within the geographic 

coordinates of 5° 19' 21.34"S to 5° 31' 10.61"S and 105° 
10' 29.93"E to 105° 21' 9.23"E, specifically located in 
the Way Halim sub-district, Bandar Lampung City 
(Figure 1). The sub-district has been identified as the 
region with the highest flooding incidents in Bandar 
Lampung City. Notably, in 2022, it accounted for 6 out 
of 29 flood events in the Way Halim (BNPB, 2023). Also, 
the sub-district has been categorized as having the 
highest population density and primarily classified by 
residential land use. Hydrologically, The Balau River, 
which serves as the primary river within the Way 
Garuntang watershed in Bandar Lampung City, 
traverses along this location. The precipitation levels in 
this region exhibit a significant increase throughout the 
period spanning from November to May. The 
circumstance amplifies the susceptibility to floods 
inside the Way Halim sub-district. The circumstances 
contribute to the heightened susceptibility of Way 
Halim District to flooding. A large population density in 
the area may increase the likelihood of significant 
losses due to flood events. The hydrological response 
area to calculate the flood discharge is located in the 
upper part of the Way Garuntang Watershed within the 
total area calculated approximately 15.37 km2. 
Furthermore, flood modelling location was applied 
along the Way Balau River with a total length of about 
4.06 km. 
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Figure 1 Image a) shows the research location positioning on Sumatra Island area marked with a red box which is the 

Lampung province, while image b) depicts the research location in Way Garuntang watershed marked with red 
rectangle color 

 

2.2. Data and Methodology 

2.2.1. Regional Rainfall Analysis 
The analysis of regional rainfall is employed to 

ascertain temporal and spatial rainfall trends within the 
hydrological response area located in the upstream 
Way Garuntang watershed. The research entails the 
computation of the maximum regional average 
precipitation by utilizing maximum daily rainfall data 
obtained from both rainfall observation stations and 
daily CHIRPS data. Before analyzing rainfall data from 
rainfall stations and CHIRPS, the data authenticity test 
is conducted using a double mass curve to ensure the 
quality of rainfall data from the stations. Subsequently, 
CHRISP data is evaluated through bias correction 
analysis, involving the calculation of correction factors 
by comparing CHIRPS rainfall data with data from the 
rain stations. Once both types of data are confirmed to 
be of good quality, the isohyet method is calculated by 
considering the topography of the study region, 
rendering it more comprehensive compared to 
alternative approaches as it integrates both the spatial 
distribution of rain stations and the topographic 
characteristics in delineating the borders of the 
precipitation zone. The findings are quantified in 
millimeters (mm) concerning daily precipitation. The 

counter line isohyet analysed using ArcGIS software 
within the spatial analysis tool. 
 
2.2.2. Runoff Coefficient Analysis 

The Cook coefficient analysis is employed to 
ascertain the C value within the hydrological response 
area. The analysis for determining the C value involves 
considering four key elements: relief (slope), vegetation 
cover, soil infiltration, and river flow density (Meyerink, 
A, 1970). Another study implies that Cook’s analysis 
could estimate peak flows considering four categories 
of numerical values and weights of attributes namely: 
terrain, infiltration, vegetation cover, and storage 
conditions (Santos et al., 2017). This study utilized 
classification of Cook coefficient conducted using 
Geographic Information System (GIS) operations. This 
involves overlaying each element layer, as illustrated in 
Table 1. 
 
2.2.3. Return Period Rainfall Analysis 

A sequence of statistical analysis steps, including 
frequency analysis, the Chi-Square statistical test, and 
the Smirnov-Kolmogorov test, was undertaken to 
identify the type of frequency distribution that meets 
the criteria given the input conditions of maximum 
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regional rainfall data. Determining the distribution type 
is crucial for estimating the maximum design rainfall 
based on the statistical characteristics of the available 
data. Frequency analysis hinges on establishing the 
probability of future rainfall magnitudes by relying on 
the statistical properties of the acquired data (Harto, 
1993). Return periods for maximum design rainfall 
were computed in this study for intervals of 2, 5, 10, 20, 
50, and 100 years. These return periods' calculation is a 
basis for assessing potential future hazards (Yucel, 
2015) and are fundamental aspect of the planning 
process (Cannon et al., 2015). 

Before utilizing the results of annual return period 
calculations as input for flood discharge hydrograph 
computations, a preliminary estimation of effective 
design rainfall is conducted for each return period. The 

calculation of effective rainfall aims to exclude the 
portion of rainfall not contributing to surface runoff. 
The effective rainfall value is derived from the 
computation of return periods for maximum rainfall, 
incorporating coefficient values obtained from the Cook 
coefficient (C) calculations for each return period. 
Additionally, since rainfall data used in flood 
hydrograph calculations must be in hourly units, the 
data representing effective maximum rainfall periods is 
converted into hourly rainfall using the Mononobe 
method for each return period. Notably, the typical 
rainfall duration in the Indonesian region is 
approximately 5-7 hours per day (Sarido et al., 2008). 
Consequently, in this study, the return periods of 
rainfall are transformed into hourly rainfall for 6 hours. 
 

 
Table 1 Cook Coefficient Classification 

Watershed 
characteristics 

Characteristics of Runoff Results 
Extreme Value 

100 
High 

75 
Normal 

50 
Low 
25 

Relief/Slope (40) 
Very steep with a 

general slope 
condition >30% 

(30) 
Hilly terrain with an 

average slope of 10% - 
30% 

(20) 
Undulating terrain with 
an average slope of 5% - 

10% 

(10) 
Relatively flat area 

with an average slope 
of 0% - 5% 

Soil Infiltration (20) 
Open ground with no 

covering, whether it be 
rocks or a thin layer of 

soil; infiltration 
capacity is disregarded 

(15)  
Low infiltration rate, 

having clay soil texture or 
other soil types with low 

infiltration capacity 

(10) 
Normal, loam soil texture, 
infiltration type is nearly 

the same as grassland soil 
type 

(5) 
High, majority of the 

soil has a sandy 
texture or other types 

of soil that quickly 
absorb water. 

Land Cover (20) 
Bare ground or very 
sparse vegetation. 

(15) 
Sparse natural land cover, 
buildings, and plants, less 
than 10%; poor drainage 

conditions 

(10) 
Well-covered with 

vegetation, grass, woody 
plants, or vegetation 

cover not more than 50%, 
uncovered 

(5) 
Dense vegetation 

cover, approximately 
90% of the area is 

covered by vegetation, 
including both grass 

and woody plants 
River Density (20) 

High, high surface 
depression or Channel 

Density >5 
channels/km2 

 

(15) 
Normal, having surface 

depressions such as lakes, 
reservoirs, or marshes 

<2% of the drainage area; 
Channel Density 2 - 5 

channels/km2. 

(10) 
Low, has a well-developed 

drainage system or 
Channel Density <2 

channels/km2 

(5) 
Neglected, surface 

depressions are few 
and shallow, drainage 
is poor and minimal 

Source: Adapted from Meyerink, A, (1970), Santos et al., (2017), and Sahid, (2024)  
 
2.2.4. Synthetic Unit Hydrograph 

Hydrograph analysis is necessary to determine 
rainfall distribution over time and calculate peak 
discharge. Data limitations in locations without actual 
discharge measurements necessitate using synthetic 
unit hydrographs (SUH) to establish the flow 
hydrograph. SUH is a method applicable for 
determining the flow hydrograph in locations lacking 
discharge measurements (Wilkerson & Merwade, 2010). 
The Snyder SUH method is widely employed to 
determine flow hydrographs. Snyder SUH establishes 
empirical relationships between watershed 
characteristics, such as area (A) (km2), main river 
length (L) (km), distance from the outlet to the 
calculated gravity point of the region (Lc), and three 

other parameters, including time lag (h), peak discharge 
(Qp) (m3/s), and base time (tb) (P. K. Singh et al., 2014; 
Snyder, 1938). Snyder, (1938) conducted a study in the 
Appalachian Mountains with watershed areas ranging 
from 10 to 10,000 square miles (26 – 259,000 km2) in 
the United States. The use of the Snyder SUH method is 
widespread in several countries, including Indonesia, 
and some studies indicate that hydrograph analysis 
results closely approximate actual discharge 
hydrographs (Prasad & Pani, 2017; Thapa & Wijesekera, 
2017). 
 
2.2.5 Two-Dimensional Flood Inundation Modelling 

Flood inundation modelling is conducted using 
hydraulic analysis applied through HEC-RAS software 
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and its RAS Mapper to delineate the extent of flood 
inundation spatially. Land use information obtained 
from the Agency for Regional Development Bandar 
Lampung City is utilized to derive Manning's roughness 
coefficient values, a prerequisite for using HEC-RAS 
software for flood modelling. Land use data is also 
employed to obtain Manning's roughness coefficient 
values, another prerequisite for using HEC-RAS 
software in flood modelling. HEC-RAS offers various 
features that facilitate hydrological studies, including 
hydrological factors, geometric data correction, river 
profile (cross-section) editing, Manning coefficients 
editing, and the capabilities of its RAS Mapper (Deniz et 
al., 2017). 
 
2.2.5. Flood Modelling Quality Assessment 

Validating flood inundation resulting from modelling 
is crucial for evaluating the accuracy of the modelling 
outcomes. Flood maps and field survey findings are 
crucial in this validation process (Venus, 2015). Flood 
event maps are obtained from the Agency for Regional 
Development in Bandar Lampung City, and data points 
for flood incidents gathered through on-site surveys are 
utilized to assess the model outcomes. The purposive 
sampling technique collects field observation samples 
to identify measurement locations for past flood events. 
The selection of measurement locations is based on 
areas around the Way Garuntang River that have 
experienced flooding. The accuracy test comparison of 
modelling results involves evaluating flood depth and 
areal distribution from both types of input data 
(Rainfall station and CHIRPS). Accuracy tests are 
calculated using Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) values. The percentage of 
accurate flood inundation locations from the modelling 
results is assessed by comparing the inundated pixel 
values with existing field conditions, determining 
whether the sampled locations have experienced 
flooding. Initially assigned a value of 1 before the 
survey to indicate inundation, the number of sampling 
locations is adjusted to 0 after the survey if the pixel 
location has never experienced flooding. Consequently, 
the results of flood event location evaluation ascertain 
the accuracy of flood inundation distribution locations 
from the modelling results. 

3. Results And Discussion 

3.1. Hydrological Analysis 
Rain data sourced from observation rain posts needs 

to be assessed for data consistency. The results of 
checking the continuity of rain data show that there are 
2 rainfall stations, namely the Sukarame from 2009 to 
2012 and the Sumur Putri from 2009 to 2011 whose 
rainfall station data results are missing. Filling the 
missing rain data is done by using the inverse square 
distance method by considering surrounding 
precipitation value from rainfall station and measuring 
the distance in approaching the missing precipitation 
value. The double mass curve test has been tested to 

validate the quality of the precipitation data and there 
is no data discrepancy so that rain data can be used in 
regional rainfall analysis. 

Furthermore, the evaluation results show that 
CHIRPS data in estimating daily maximum rain when 
compared to the daily maximum rain data from the 
rainfall station is underestimated, around 74.44% 
shows the maximum rain value below the observation 
rain value. Then, to overcome the underestimates, it is 
necessary to calculate the correction bias of the CHIRPS 
data. The selection of the best type of correction 
method is done by looking at the RMSE value and the 
Nash Sutcliffe Efficiency test (NSE) which is the most 
compared to the results of each method, namely the 
Piani, Linear Scaling, and Quantile Mapping (QMap) 
methods. The suitable bias correction results show that 
the linear scaling method is the closest method with an 
RMSE value of 21.45 and an NSE value of 0.09 (Table 2). 

 
Table 2 Comparison of the results of using bias correction 

methods on CHIRPS rain data 

Bias Correction Method RMSE 
(mm) 

NSE 

Piani 30.5 -0.85 

Linear Scaling 21.45 0.09 

Qmap_PTF 46.55 -0.8 

Qmap_QUANT 46.98 -0.84 

Qmap_RQUANT 46.65 -0.81 

CHIRPS Original data 28.18 -0.58 

 
Furthermore, regional rainfall analysis is carried out 

with data sources derived from observation rain posts 
and CHIRPS data. The calculation of regional rainfall is 
carried out in the hydrological response area located in 
the upstream area with an area approximately 15.37 
km2 (Figure 2). The maximum precipitation data 
sourced from both rainfall station and CHIRPS data are 
used as input in interpolation for regional rainfall 
analysis. The results of the interpolation analysis are in 
the form of isohyet grid data which are then derived to 
obtain isoline contours. Isoline contours are imaginer 
lines connecting high rain points at each rainfall station. 
The isoline is made with a contour interval of 5 mm 
with the assumption that making a tight contour 
interval can produce rainfall areas that are close to field 
conditions. 

The results of the regional rainfall analysis over a 
span of 15 years from 2008 to 2022 in the study area 
show that the maximum value of regional rainfall is 
157.12 mm, with an average value of 108.48 mm. The 
highest rainfall occurred in 2010. While the minimum 
value of regional rainfall occurred in 2012 with a 
regional rainfall value of 54.03 mm (Figure 2). The 
results of the regional rainfall analysis with the source 
of corrected CHIRPS rain data show that the maximum 
value of regional rainfall occurred in 2016 with a total 
value of 140.88 mm, while the average and lowest 
values were 86.63 mm and 42.95 mm (Figure 2). The 
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analysis of rainfall data for the region, utilizing 
information from rain gauge stations and CHIRPS, 
reveals variations in both the quantity and timing of 
peak rainfall values. The difference in maximum 
regional rainfall values between the two datasets is 
16.24 mm, representing a disparity of 10.34%. 

Moreover, there is a temporal shift in the occurrence of 
maximum regional rainfall values from 2010 to 2016 
(Figure 2). These noted distinctions may necessitate 
additional analysis to explore factors contributing to 
the disparities in the data results. 

 
Figure 2 Rainfall calculation of the study area from 2008 - 2022, a) use of rainfall data of observation post, b) CHIRPS 

rainfall data 

 
Figure 3 Calculation of runoff coefficient value using Cook method, a) Relief or slope condition, b) soil type condition, c) 

land cover condition, d) river flow density condition, e) cook value overlay result, f) cook value calculation table
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3.2. Runoff Coefficient Analysis 
Runoff coefficient is estimated using the Cook 

method considering the four parameters namely relief 
(slope conditions), soil infiltration, land-cover, and 
drainage density over the hydrologic response area. 
The relief aspect of the location with low slope 
conditions with a range of 0% - 5% or flat with a 
percentage of 40.47% are assumed to have runoff 
characteristics. Slightly steep slopes are found in the 
southern part of the hydrological input area with a 
percentage of 2% of the total area. The land cover 
condition of the study area is classified into 4 land 
cover classes with the largest percentage of 74.50% is 
the type of natural vegetation land cover that rarely 
shows the condition of the water rate during rainfall 
will immediately flow. Calculation of drainage density is 
calculated based on river density analysis which results 
in that the hydrological input area of the study has the 
following 4 flow density classes namely very low, low, 
normal, and high (Figure 3d). The normal flow density 
class dominates the area with a total percentage of 
43.27%. The normal flow density class means that there 
are 1 - 2 streams per km2.  

Moreover, the assessment of infiltration rate 
considering the soil conditions to estimate the ability of 
soil to infiltrate water (Figure 3b). The soil types found 
in the hydrological input area are divided into 2 types, 
namely Chromic Luvisols and Eutric Cambisols. The 
Chromic Luvisols soil type is assumed to have a normal 
infiltration rate because this soil type is a soil 
containing loam, while the Eutric Cambisols soil type 
has a low infiltration capability category because this 
soil type has a clay texture. Based on the results of the 
calculation of the C value, the total runoff coefficient 
value is 56.24 or 0.56 which is a type of Normal class 
(Figure 3f), then the flow coefficient of the hydrological 
input area is 0.56 which indicates that about 56% of the 
falling rainfall will be converted into surface flow and 
vice versa. The stages of calculating the C value using 
the cook method can be seen in Figure 3. 

 
3.3. Return Period Rainfall Analysis 

The return period rainfall analysis is carried out by 
first determining the type of rain frequency based on 
the rain distribution method. The results of the design 
rainfall calculation with the data source of the 
observation rain post show that the return period for 2 
years produces a rainfall amount of 107.41 mm, 5 years 
of 135.07 mm, 10 years of 149.84 mm, 20 years of 
161.98 mm, 50 years of 175.40 mm, and for the 100-
year return period of 184.13 mm (Figure 4). The 
effective design rainfall value in each period is the 
rainfall value that has received consideration of the 
amount of rainfall that becomes runoff or runoff 
compared to the runoff coefficient value. The results of 
the comparison of the hourly rain distribution show 
that the rain data sourced from the observation rain 
post in the 2-year return period is greater than the 
CHIRPS rain data, but the higher the return period, 

namely in the annual return period, the number of 
CHIRPS hourly rain distribution data is greater than the 
rain data sourced from the observation rain post. 

 
Figure 4 Comparison of Design precipitation Values for 
Each Return Period and Effective Design precipitation 

using rainfall station data and CHIRPS 

3.4. Flood Synthetic Unit Hydrograph (SUH) Analysis 
The results of the SUH Snyder-Alexejev calculation 

found that the time required for water to flow (tp) due 
to rain falling to reach the end point or outlet is about 
3.88 hours and the time required between the onset of 
rain to reach the peak of the hydrograph is about 4.38 
hours. Based on the results of making superposition 
hydrographs on a 2-year return period, the time to 
reach peak discharge is 7 hours.  

 
Figure 5 Design Rainfall Distribution with 

Superposition Hydrograph of each return period, 2- 
year return period, 5-year return period, 10-year return 

period, 20-year return period, period 50-year return 
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period, and 100-year return period, a) observed rainfall 
post data, b) CHIRPS rainfall data 

The results of the analysis of the amount of peak 
discharge with data sources derived from the 
observation rain post at each return period of 2, 5, 10, 
20, 50, 100 years amounting to 42.21 m3/s, 53.08 m3/s, 
58.88 m3/s, 63.65 m3/s, 68.92 m3/s, 72.36 m3/s 
respectively (Figure 5a). Furthermore, the results of the 
analysis of the peak discharge amount with data 
sources derived from CHIRPS at each return period of 2, 
5, 10, 20, 50, 100 years amounted to 31.84 m3/s, 44.53 
m3/s, 52.92 m3/s, 60.95 m3/s, 71.34 m3/s, 79.18 m3/s 
sequentially (Figure 5b). 
 

3.5. Two-dimensional (2D) Flood Inundation Modelling 

Two-dimensional (2D) flood inundation modelling 
was carried out on a 4.06 km long river to derive 
inundation distribution due to water runoff from Way 
Halim River. The results of flood modelling are in the 
form of raster data with pixel values containing flood 
depth values. The results of flood modelling at each 
return period using SUH data sourced from the 
processing of observation post data show differences in 
area at each return period (Figure 6a). The average 
difference in flood inundation at the return periods of 2, 
5, 10, 20, 50, and 100 years is 5.57 ha. The area of flood 
inundation modelling results sourced from SUH input 
data processed from CHIRPS data shows a difference in 
area at each return period which is increasingly 
widespread in line with the increase in the return 
period of the flood (Figure 6c). The average difference 

total area of flood inundation modelling results using 
CHIRPS rainfall data is 8.43 ha. The highest difference 
in area occurs in the 2-year flood return period with a 
total area difference of 11.80 ha. The results of the 
calculation of the area difference in the 50 and 100 year 
return periods show that the flood area is smaller than 
the flood area modeled with CHIRPS input data. The 
difference in the distribution of flood inundation area 
when viewed spatially can be involved in the difference 
in inundation area in the middle to downstream of the 
modelling (Figure 7). 

In addition to the difference in inundation area, the 
difference in flood inundation height of the modelling 
comparison results shows that there is a difference in 
the maximum height of flood inundation both using 
input data derived from observation rainfall posts and 
CHIRPS data. The average difference in the height of 
flood inundation with input data from the observation 
rain post at each flood return period is 0.40 m, while 
the modelling results with CHIRPS rain data input show 
the difference in the maximum inundation height at 
each return period of 0.65 m (Figure 6b). The spatial 
distribution of differences in flood inundation height 
values from flood modelling derived from observed 
rainfall post data and CHIRPS data shows an increase in 
height differences downstream for the 2-year to 20-
year flood period (Figure 8). In contrast, the 50-year 
and 100-year flood return periods show that the 
difference in elevation value is getting bigger towards 
the downstream (Figure 6d). 

 
Figure 6 Flood inundation area modelling results with SUH data sourced from rainfall station and CHIRPS data, a) the 

comparison flooded area, b) the difference maximum flood depth, c) the difference flooded area (ha), and d) the difference 

maximum flood depth (m) 
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Figure 7 Comparison of flood inundation distribution for each return period between rainfall station and CHIRPS data 

 
Figure 8 Difference in Flood Inundation Elevation Values between Observation Rain Post data input and CHIRPS Data
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3.6. Flood Inundation Model Validation 

Model accuracy validation was conducted to evaluate 
the resulting flood inundation model, utilizing data 
from rainfall stations and CHRIPS. A total of 54 model 
validation points were employed to validate the 
outcomes of flood inundation modelling. Accuracy 
testing involved calculating RMSE and MAE values on 
observed rainfall stations and CHIRPS data at field 
observation locations, which were subsequently 
compared to assess differences between the two 
datasets. Model validation results revealed variations in 
flood inundation heights from rainfall stations and 
CHRIPS data in each recurrence interval. The accuracy 
test results for flood inundation heights in each 
recurrence interval indicated that the average RMSE 
and MAE for observed rainfall station data were 2.56 m 
and 2.19 m, respectively. In comparison, the average 
RMSE and MAE for CHIRPS data were 2.43 m and 2.06 
m respectively. Based on these differences, it was 
determined that the accuracy of flood inundation height 
modelling using CHIRPS was superior, with an 
improvement of 5.16%. 

Moreover, the accuracy of flood modelling results 
was assessed by comparing the raster modelling results 
with existing conditions. The assessment results 
demonstrated that flood inundation modelling using 
CHIRPS data achieved a higher accuracy level, reaching 
74.22%, compared to modelling results using observed 
rainfall station data. This evaluation provides an 
overview indicating that modelling with CHIRPS input 
data is more precise in predicting inundated areas 
compared to modelling using observed rainfall station 
data. 

In the context of flood inundation modelling, 
selecting Digital Elevation Model (DEM) data is critical 
for obtaining accurate results. DEMNAS data, a Digital 
Surface Model (DSM) data provides information about 
the height of land cover, including vegetation and 
buildings, as well as the original ground height without 
any cover on top of it (Danoedoro et al., 2022). Thus, 
when modelling floods using DSM data, the resulting 
flood heights will be based on surface elevation rather 
than the actual ground elevation. A sensitivity 
assessment of the DEM is also necessary to ensure that 
the elevation data used aligns with the requirements, 
thereby achieving a high level of accuracy in flood 
modelling (Sahid et al., 2024). The more detailed the 
topographic data used, the better the accuracy of the 
results, as topographic data is a pivotal factor in flood 
modelling (Casas et al., 2006). Despite significant 
differences in height results, CHIRPS data can be 
considered an alternative in flood inundation modelling 
to map locations with potential flood occurrences. 

4. Conclusion 

Floods are hydro-meteorological disasters that can 
cause economic losses and threaten human life. Flood 
inundation modelling could be the first step to reduce 
the impact of flood losses. Satellite-based rainfall data, 

such as CHIRPS, has potential as input for flood 
modelling. However, it is necessary to correct the bias 
in the CHIRPS data to approach the observed rain data. 
The first stage of analysis is hydrological analysis which 
includes rain data quality test, CHIRPS rain data 
accuracy test, regional rainfall analysis, runoff 
coefficient analysis, and design rainfall analysis. Then 
2D modelling of flood inundation was carried out using 
HEC-RAS. The results of the modelling show the 
difference in the extent and height of flood inundation 
between input data from observation posts and CHIRPS. 
This difference tends to increase as the flood return 
period increases. 

Furthermore, it is necessary to continue to monitor 
and improve CHIRPS satellite rainfall data for better use 
in flood inundation modelling. Further research is 
needed to understand and address the accuracy in flood 
inundation modelling results between observed rainfall 
data and CHIRPS. The results of flood inundation 
modelling can be used for flood risk mitigation and 
management planning, as well as to identify flood-
prone areas. Flood risk reduction efforts, such as the 
construction of levees or more efficient waterways, can 
be made based on the results of this flood inundation 
modelling. 
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