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ABSTRACT 
Recent climate change has had a negative impact on a wide range of human and natural systems, and it is clear that humans influence 
the climate. Because, as anthropogenic influence increases, the heat output from the land surface increases, speeding up the rate of 
climate change. In this regard, the use of RS and GIS techniques has provided various opportunities for research to examine these 
changes. The current analysis is based on the Landsat 1989, and 2020. Over the study period of 31 years, the built-up regions 
increased in size from 44.23 km2 to 154.56 km2. Whereas, the area covered by scrubland, water bodies, and vegetation cover has 
significantly decreased. The LST study further supports the outcome, showing that the mean and standard deviation increased from 
14.81°C±1.32(1989) to 18.82°C±1.57(2020). The study also made an effort to examine how LULC affected LST; while vegetation 
cover has consistently helped to lower mean LST, built-up areas and scrubland are the main drivers of mean LST rise. The LST and 
NDBI revealed a positive correlation, while the NDVI/SLOPE and LST showed a negative correlation. Subsequently, the multiple 
linear regression (MLR) models concluded that the BUAs has evolved into a serious threat to the increase in LST, but increase in 
vegetation cover and SLOPE would result in slight decrease in LST. the study recommended that the government create policies that 
restrict future land encroachment and conversion, notably of forested area and water bodies, and make an immediate effort to 
increase the quantity and quality of urban green cover in the study area. So that we may, respectively, minimize the potential hazard 
posed by future LST rise and LULC change.  
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1. Introduction 

In recent decades, a wide range of advancements in 
land use and land cover change (LULCC) methods and 
techniques have been developed, along with a variety of 
mapping techniques for measuring LULCC using change 
detection technique (Darius, 2017; Lv et al., 2018; 
Mishra et al., 2020). In this regard, LULCC are crucial 
indicators while understanding human activities and 
environmental interactions (Dewan et al., 2012). It is 
essential to obtain current and accurate LULCC data in 
order to interpret and analyse the environmental effects 
of such change because the straightforward change 
detection technique is rarely sufficient in and of itself 
(Giri et al., 2005; Srivastava et al., 2012). However, the 
primary fundamental factor determining the LULC 

change regarding pattern and size remains alike for most 
urban areas, i.e., "population growth", such changes are 
continuous and dynamic. Nevertheless, the growth of 
urban and suburban regions demands additional land 
and encourages the transformation of rural areas into 
urban areas (Xiaoqing & Jianlan, 2007). The imperative 
for urbanization and the demand for increased human 
settlements frequently give rise to an inescapable 
consequence: the irreversible loss of functional and 
natural land cover. This phenomenon, in turn, leads to 
localized alterations in temperature, weather patterns, 
and precipitation, thus sparking intricate environmental 
dynamics with potential far-reaching implications 
(Morshed et al., 2022; Sresto et al., 2022a). When these 
changes are concentrated over large areas, they have the 
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potential to affect the Earth's climate by altering local, 
regional, and global circulation patterns, altering the 
reflectance of the Earth's surface, and raising the 
atmospheric CO2 concentration (Fattah et al., 2021; 
Sresto et al., 2022a). As a result, growing urbanisation 
reduces environmentally friendly land cover types like 
forests, vegetation, scrubland, and water bodies, which 
has an impact on the ecosystem and, consequently, 
carbon sequestration (Fattah et al., 2021). This effect 
ultimately contributes to climate change and global 
warming, as well as a rise in LST (Morshed et al., 2022; 
Sresto et al., 2022b; Thakur et al., 2020). Considering the 
method of classification, the supervised classification 
method was used in the area of interest to determine the 
LULCC Classification and accuracy assessment of each 
classification algorithm (Verma et al., 2020). When 
calculating the surface energy budget, evaluating the 
LULCC, and investigating other aspects of the earth's 
surface, the land surface temperature (LST) is an 
essential element and an indispensable factor(Guha et 
al., 2020a), the conversion of the marshland primarily 
influences the LST increase into agricultural land or bare 
land; and the conversion of the vegetation cover into the 
built-up area (BUAs)(Mallick et al., n.d.). In contrast to 
vegetated areas, impermeable surfaces shift the 
momentum balance between the LST and surrounding 
atmosphere, which changes heat exchange patterns 
(Jana et al., 2020a). Numerous previously published 
studies and numerous scientists from various areas 
proved that LULC has an influence on LST (Guha & Govil, 
2021; Pal & Ziaul, 2017a; J. A. Sobrino et al., 2001; 
Santosa, 2016). Regarding NDVI, the research into the 
correlation between LST and LULCC aids in the 
resolution of problems pertaining to man - nature 
interactions and climate change, as the vegetation in the 
area determines the LST by evapotranspiration through 
the latent heat influx from the surface to the atmosphere 
(Jha et al., 2000). Since LST has a significant impact on 
land unitization management systems, the correlation 
between LST and NDVI in research involving remote 
sensing is extremely significant (Guha et al., 2020a; Guha 
& Govil, 2020). The LST-NDVI relationship is influenced 
by a wide range of variables, including the climate, 
vegetation types, land use, urbanisation, etc (Guha et al., 
2020b). The relationship between LST and NDVI has 
been calculated in numerous earlier research (L. Chen et 
al., 2013; Deng et al., 2018; Fatemi & Narangifard, 2019; 
Guha et al., 2020a). The normalised differential build-up 
index (NDBI), on the other hand, measures the amount 
of impervious surface in BUAs, one of the main forms of 
land cover. It can be used as a measure of the intensity of 
development (Macarof & Florian, 2017; Syafitri & 
Santosa, 2020), several earlier studies have 
demonstrated that  BUAs land can quicken the land's LST 
(Amiri et al., 2009; Song et al., 2014; Yuvaraj, 2020). 
Therefore, suggested that the LST change is a crucial 
criterion for assessing the environmental quality and 
socio-economic development policies (Guha & Govil, 
2020; Jalan & Sharma, 2014; Malik et al., 2019; J. Sobrino 

et al., 2004). Given the significance of slope in response 
to LULC, NDBI, and NDVI. The LULC change and slope can 
be related, and this relationship has important 
consequences for a variety of environmental and 
socioeconomic issues. Slope, in fact, influences 
anthropogenic (agricultural, urbanisation, 
infrastructure) development through determining the 
level of soil erosion, water runoff patterns, vulnerability, 
and natural hazards. Therefore, slope is frequently 
observed as the major element in land cover changes 
(Çetin, 2019). Additionally, the statistical approaches 
such as regression analysis can aid in assessing the 
degree and direction of a correlation between LULC 
change and slope. Several studies have indicated that 
topographical features such as slope, elevation, and 
aspects influence the spatial distribution and spread of 
vegetative cover (Walsh et al., 2001), LULC, NDBI and 
NDVI.  

Recent developments in R.S. and G.I.S. tools have 
enabled researchers to detect and analyse such changes 
more efficiently (Bhat et al., 2017), so that more precise 
research outcome data could be obtained. Several 
previous studies on the temperature trends of Dehradun 
city and Doon Valley (Agarwal et al., 2019; Jana et al., 
2020a; Patidar & Sankhla, 2015; Taloor et al., 2020) have 
also highlighted the cause and consequences of LST rise. 
The major purpose of this study is to determine the 
NDVI, SLOPE, and NDBI values by employing change 
detection; to identify the area  of change and by 
analysing the spatiotemporal variation in LULC, LST, 
NDVI, and NDBI; to evaluate the strength of the 
association between LST and NDVI, SLOPE, and NDBI 
using the correlation coefficient (r). Finally, a multiple 
linear regression model was developed to determine the 
predictor and its significance for the LST. The model's 
prediction aids in interpreting how LST changes in 
response to NDVI, SLOPE, and NDBI changes. 

 

 

Fig. 1 Location of the Area of Interest (AOI). 

2.  Map of the Study area 

The study area of the current research was situated in 
the western part of the Dehradun district, Uttarakhand, 
India. The study area has a longitudinal extent of 
77°34'30"E to 78°10'30''E, and the latitudinal extent is 
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30°13'30''N to 30°32'30"N as shown in Fig. 1, and its 
elevational range varies from 362m to 2320m from the 
mean sea level. The research area for the current 
analysis includes Pachhua Dun (Vikasnagar and 
Sahaspur) and the Dehradun urban agglomeration 
(DUA) as illustrated in Figure 1 showing the location of 
the area of interest.  

The study area's average annual precipitation is 
2073.3 mm, and the months of June through September 

account for the majority of the district's yearly 
precipitation (Government of Uttarakhand, 2022). As 
per the Census 2011, the total population of Sahaspur 
andVikasnagar C.D Block was 167501 and 153793 
persons respectively; and the total population of 
Dehradun Municipal Corporation (DMC) was + Out 
Growth (OG) was 5,74,840, and the total population of 
Mussoorie urban agglomeration was 33657. 

 

 

Fig.  2. Flow chart of research methodology. 

 
Table 1. Data sources and Method of Data Collection 

 

 

3. Material and Methods 

For the purpose of mapping the LULC change of study 
area, which includes polygons of Pachhua Dun including 
the urban agglomerations of Dehradun and Mussoorie, 
Landsat-5 TM satellite images from the years 1989 and 
2010, as well as a high-resolution cloud-free 10 per cent 
Landsat 8 OLI/TIRS, 2020 image, have been chosen. Fig. 
2 shows the methodological framework employed for 
the study, while Table 1 gives more information on data 
collection methods and data sources. 

3.1 Method and techniques of Landsat image 
classification 
The most popular approach for image classification 

used to extract LULC classes and create LULC maps is 
maximum likelihood classification (MLC). It was carried 

out using the MLC tool available in ArcGIS 10.8, a 
supervised classification method(Ahmad & Quegan, 
2012). Since it bases its classifications on Bayes' 
classifications, it calculates the statistical probability for 
each LULC category while taking into consideration the 
covariances and variances of the training sample data 
classes. The software ArcGIS 10.8 was extensively used 
to detect changes from 1989 until 2020. The numerous 
LULC classes in the study area are then divided into five 
main categories: AL, BUAs, O/SL, VC, and WB. Table 2 
highlights a description of each of the five LULC 
classification schemes. 
 

3.2 Change detection technique 
The change detection technique recognizes gaps in the 

state of a phenomenon or an object by examining it at a 

Data types  Data Sources Method of data collection Date of Aq. 

Landsat-5 TM, 1989 http://earthexplorer.usgs.gov/ Download (with path and row no.146 by 39) 1989/12/05 

Landsat 8 OLI/TIRS, 2020 http://earthexplorer.usgs.gov/ Download (with row and path no. 147 by 39) 2020/12/10 

AOI and Population data  District Census Handbook 2011 censusindia.gov.in. 2022/11/02 

SRTM DEM http://earthexplorer.usgs.gov/ N30E077, N30E078 2022/05/12 
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distinct period (author et al., 2004). Therefore, in order 
to achieve the best resource management, it is important 
to regularly, timely, and accurately apply change 
detection techniques on the Earth's surface. This forms 
the foundation for higher-quality, in-depth analysis. 
Change detection has become an essential technique for 
managing and monitoring the progress of urban growth 
and natural resources (Hassan et al., 2016). The last few 
decades have witnessed growth in various change 
detection methods viz., Post-classification comparison 
technique, change matrix,  image differencing, and 
principal component analysis (author et al., 2004). In the 
current paper, the vital information about the spatial 
distribution of LULCC is presented by the post-
classification change matrix (Shalaby & Tateishi, 2007); 
subsequently, the error-matrix has represented LULCC 
to assess the overall LULCC generated from classified 
images of the study area. 

 

3.3 LST, NDVI, NDBI and SLOPE extraction 

a. Extraction of LST from Thermal Band 

The Digital Number (DN) is converted into the 
Spectral Radiance (Lλ) from Landsat 5 and Landsat 8. 
The sensor radiance could be transformed according to 
the signals obtained by thermal sensors. Each object is 
capable of discharging thermal electromagnetic energy. 
As indicated in Eq.(1)(Aakriti & Ram, 2015; Nichol & To, 
2012). 

 
𝐿 𝜆 = 𝑀𝐿 ∗  𝑄𝑐𝑎𝑙 +  𝐴𝐿                               (1) 

 
Table 2. Description of different LULC classification 

schemes used. 
Class General description 
 AL Agricultural fallow Land and irrigated 

Agricultural Land. 
 BUAs Human Settlements and Roads 
 O/SL Agroforestry, Shrubs, Land with tree canopy 

density (10-40 per cent). 
 VC Land with tree canopy density 40 per cent > 
 WB The area under Perennial and Ephemeral 

rivers. 
 

Where (Lλ) is a Top of Atmosphere (TOA) spectral 
radiance (Watts/m2 × srad × µm), ML is the 
multiplicative scaling factor for band-specific radiance, 
QCAL is the DN of given Pixel (Band 6,10 and 11), and AL 
is the band-specific additive rescaling factor. In terms of 
constant value, Landsat 5-1989 TM, and Landsat 8, 2020 
has constant values for Band 10 (K1) and (K2) of 774.88 
and 1321.08, as well as in B11 (K1) and (K2) of 480.88 
and 1201.14 respectively. 

b. Calculating Land Surface Emissivity LSE (𝜺) 
The surface emissivity ranges between 0.97 and 0.99, 

and it was estimated using the (J. Sobrino et al., 2001) as 
given in Eq. (4) 

 
                 𝜀 = 0.004𝑃𝑣 + 0.986                                 (4) 

Where, 𝜀 = Land surface emissivity (LSE); Pv = 
Proportion of vegetation, According to Carlson and 
Ripley (Carlson & Ripley, 1997), Pv  for both Landsat 5 
and Landsat 8 image could be derived from NDVI image, 
as given in Eq. (5) 

 

𝑃𝑉  =  ( 
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

)
2  

                           (5) 

 
Where: 
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 𝑀𝑖𝑛 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑁𝐷𝑉𝐼 𝑖𝑚𝑎𝑔𝑒, and 
𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 𝑀𝑎𝑥 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑁𝐷𝑉𝐼 𝑖𝑚𝑎𝑔𝑒. 

c. Land Surface Temperature 
Second, the (Lλ) was converted into a satellite 

brightness temperature(BT) Kelvin T(K) using Eq. (6) 
derived from the following formula (Weng et al., 2004). 

 

𝐿𝑆𝑇(𝐾) =
𝑇𝑟

𝐼𝑛𝜀(
λ ∗ Tr

𝑝
) + 1)

                                         (6) 

Where, λ = central wavelength (in µm) of the Landsat 
thermal band; p was derived using Eq. (6) = 1.438*10-2 
m K. Thus, LST, NDVI and NDBI images derived have 
been used to study Spatio-temporal patterns; and h = 
Planck’s constant (6.26 × 10-34 J∙s), S= Stefan 
Boltzmann’s constant (1.38 × 10-23 J∙K-1), c= Velocity of 
light (2.998×10-8 m/s and p= 14380), Ꜫ = denotes the 
surface emissivity(Zhou & Wang, 2011a) However, even 
after the emissivity correction, the temperature stays 
almost the same(Lo & Quattrochi, 2003; Nzoiwu et al., 
2017). 

 

              𝑝 =  
ℎ × 𝑐

𝑠
(1.438 × 𝑒−2 𝑚𝐾)                         (7)     

d. Conversion of Kelvin into degrees Celsius  
The thermal band converted Kelvin (K) into degrees 

Celsius (°C) using Eq. (8) 
 
                   𝑇(℃) = 𝑇 − 237.15                                  (8) 

 

e. NDVI (Normalized Difference Vegetation Index) 
The greenness of the environment is measured by 

NDVI (Lo & Quattrochi, 2003), and the NDVI is calculated 
through the data acquired in NIR and Red band of 
Landsat satellite using Eq.(2) given by (Rouse et al., 
1973)and Eq.(2a) for Landsat 8. 

 

𝑁𝐷𝑉𝐼 (𝐿𝑎𝑛𝑑𝑠𝑎𝑡 5) =          
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑  
                    (2) 

𝑁𝐷𝑉𝐼(𝐿𝑎𝑛𝑑𝑠𝑎𝑡 8)   =    
𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4
                 (2𝑎) 

 

Where for Landsat 5, the Red (B3) and NIR (B4) are 
the spectral reflectances of vegetation in the red and 
infrared bands. In Landsat 8, the Red (B4) and NIR (B5) 
represent vegetation in red and infrared bands. 
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f.  Normalized Difference Built-up Index (NDBI) 

The NDBI is also considered an essential factor of LST 
to identify urban and built-up areas (Zha et al., 2003), It 
is an indicator of urban areas that can uncover built-up 
and barren land (Thomlinson et al., 1999), and it could 
be derived using Eq.(3 and 3a). 

 

𝑁𝐷𝐵𝐼 (𝐿𝑎𝑛𝑑𝑠𝑎𝑡 8)  =  
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅
                     (3)       

   𝑁𝐷𝐵𝐼(𝐿𝑎𝑛𝑑𝑠𝑎𝑡 5)

=
    𝐵𝐴𝑁𝐷5 − 𝐵𝐴𝑁𝐷4    

𝐵𝐴𝑁𝐷5 + 𝐵𝐴𝑁𝐷4
        (3𝑎)        

 

g. Digital Elevation Model (DEM): SLOPE 
A three-dimensional (XYZ) digital cartography dataset 

called a "Digital Elevation Model" (DEM) is created using 
photogrammetric or contour line methods (Gandhi & 
Sarkar, 2016). However, the ASTER sensor from the 
Terra satellite, which is available to 99 percent of the 
world for free and offers elevation data with a 30m 
resolution, was employed for the current investigation. 
The SLOPE value was then extracted from the ASTER 
DEM using ArcGIS 10.8. 
 

3.4  Accuracy Assessments 
Accuracy assessment plays a significant role in any 

classification project as it seeks to quantitatively assess 
the effectiveness of the sampled pixels in the correct 
LULC classes. The Kappa coefficient, overall accuracy 
(OvAc), producer accuracy (PrAc), and user accuracy 
(UsAc) were used as instruments in the accuracy 
assessment. Thereafter, an accuracy evaluation of all 
MLC-classified images was made using an error matrix 
(Pal & Ziaul, 2017b; Yusuf et al., 2014; F. Zhang et al., 
2016; Y. Zhang et al., 2013). Where the UsAc is the 
percentage of sampled pixels accurately categorised 
inside the satellite image, showing the "Error of 
Commission," and the PrAc reflects the likelihood that a 
sampled pixel is classified to a LULC type and represents 
the "Error of Omission." The ratio between the total 
number of training pixels that were properly detected 
and the total number of pixels used for accuracy 
evaluation is then used to calculate OvAc. The objective 
is to have an overall accuracy of 85 per cent, with no 
LULC class having an accuracy below 70 per cent 
(Thomlinson et al., 1999). 

a. Overall Accuracy (OvAc) 
The OvAc is a ratio between correctly classified 

training pixels and the total number of pixels as given in 
Eq. (9) 

 

𝑂𝑣𝐴𝑐 =
𝑂𝑣𝐴𝑐 ∑ 𝑐𝑎𝑎

𝑢
𝑎=1

𝑄
× 100%                                         (9) 

 
Where the lowest acceptable OvAc is 85 and Q and U 

are the total numbers of training pixels and Class, 
respectively. The (K) was used in conjunction with an 
OvAc assessment to get results with greater precision. 

b. Kappa Coefficient(K) 
The agreement between two sets of the categorical 

dataset is measured by (K) while correcting for chance 
agreement between the categories(Jenness & Wynne, 
2005). (K) was considered for calculating the 
classification system's performance(Rogan & Chen, 
2004) for LULC. (K) report the relationship between the 
reference data and the classified map (Lillesand et al., 
2015). (K) the statistic measures agreement on a scale 
where 0.00 indicates agreement being no better than 
chance or there is no correlation in the classification, 
whereas a (K) of 1 represents perfect agreement. 
Interpretation (Landis & Koch, 1977) of (K), and its 
formula are given in (Table 3) and Eq. (10). 

 

𝐾 =   
𝑛 ∑ 𝑥𝑖𝑖  

𝑝
𝑖=1 −  ∑ (𝑥𝑖+  ×  𝑥+𝑖)𝑝

𝑖=1

𝑛2−∑ (𝑥𝑖+ ×  𝑥+1
𝑝
𝑖−1

)
                         (10) 

 

Where, 𝑝  = Number of classes, ∑𝑥+1=  ∑ of column i; and 
 ∑𝑥𝑖+ = ∑ of row i, and  𝑛   = Total number of training 
pixels, and  ∑𝑥𝑖𝑖   = Total number of elements of the error 
matrix. In order to represent the results, the error matrix 
was then built by comparing the reference class labels 
for the LULC class with the actual results(Stehman & 
Czaplewski, 1998).  

Table 3. Interpretation of Kappa coefficient (K)(Landis 
& Koch, 1977) 

Sr. No Kappa Interpretation 
1. < 0 No Agreement 
2. 0.0 - 0.20 Slight Agreement 
3. 0.21 – 0.40 Fair Agreement 
4. 0.41- 0.60 Moderate Agreement 
5. 0.61-0.80 Substantial Agreement 
6. 0.81-1.00 Almost perfect agreement 

Source: Landis and Koch (1977) 
 

3.5 Correlation Coefficient and Multi-Linear Regression 
Model. 

a. Correlation Coefficient (r)  
The correlation (r) is an indicator of the strength of 

the linear relationship between the two different 
variables, as far as the strength of the relationship 
(Naidoo et al., 2013) of (r) is concerned, 0.00- 0.2 is 
regarded as a very weak; 0.2-0.4 is weak or low; 0.4-0.7 
is moderate; 0.7-0.9 as strong and high strength of 
relationship; and 0.9-1.0 is interpreted as a very strong 
and very high strength of the relationship. Eq. 11 (Yim et 
al., 2010) is as follows;  

 

𝑟   =  
𝑋𝑌 −  

(𝑋)(𝑌)
𝑁

(𝑋2 −
(𝑋)2

𝑁
) (𝑌2 −

(𝑌)2

𝑁
)

                           (11) 

 
Where X denotes the independent variables, and the 

dependent variable is given as Y. and n is the number of 
observations. Furthermore, to test the strength of the 
relationship, the formula of the correlation coefficient of 
determination is given in Eq.12 below; 
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𝐶/𝐷 =  𝑟2                      
(12) 

Where C/D represents the Coefficient of 
determination; and  𝑟2 is denoting the Correlation 
coefficient (Awuh et al., 2019). 

b. Multiple linear regression (MLR) 
Using a variety of explanatory variables, the MLR 

statistical method forecasts the outcome of a response 

variable. It is also known as multiple regression, the MLR 
can be viewed as an extension of simple linear 
regression (SLR), where there are p explanatory 
variables, or SLR can be thought of as a particular case of 
MLR p=1. The value of LST, NDVI, SLOPE, and NDBI were 
statistically analyzed for the creation of a model using, 
MLR with the help of SPSS 25 (Yuvaraj, 2020), the 
formula is given in Eq. 13 below; 

 
𝑌 =  𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3,                                    (13)    

 

Where the dependent variable is Y, and 𝛼 is the 
intercept, 𝛽1,2,3.., are independent variables which would 
be the predictor of the dependent variables. 

 

3.6  Accuracy assessment of the raster layers 
 

Table 4. Statistical summary of accuracy assessment of 
LULC map 

 

 
 

Table 4 represented the statistical summary of the 
accuracy assessment results and exhibits the OvAc, 
Kappa (k), commission errors, and omission errors in 
detail. The OvAc and (K) values were 79.42 per cent and 
74.08 per cent for the Landsat 1989, which falls in 
between the 0.61-0.80 range of kappa statistics, Thereby 
the strength of agreement for this classified image turns 
out to be a Substantial Agreement. However, the OvAc 
was 87.46 per cent, and the kappa statistics value was 
84.04 per cent for Landsat 8, 2020. Which falls in 
between the 0.81-1.00 range of (K); thus, the strength of 
agreement for this Landsat 8 image turns out to be an 
Almost Perfect Agreement. 

 

3.6.1 Conversion matrix of LULC map 
Tables 5 and 6 exhibit the details of the net Loss/Gain 

area and the percentage covered by each class. Fig 3 and 
4 show the final result obtained from the analysis of 
change detection of each LULC class. The 1989 to 2020 
period analysis revealed that a significant amount of 
LULCC occurred in the area.  

Table 5. Temporal Change dynamics of Area under 
each LULC Class of AOI (1989 and 2020. 

 
 
The agricultural land with a total area of 256.82 km2 

dominates the significant proportion compared to BUAs, 
which covered merely 4.75 per cent (44.23 km2) of the 
geographical area in 1989. Whereas the vegetation cover 
occupied the most extensive land cover area with 56.57 
per cent (526.70 km2) of the study area. The study's 
overall analysis from 1989 to 2020 indicated that the 
study area had registered a fast expansion in the BUAs 
with an overall growth of +249.45 per cent (110.33 
km2). Population growth has long been seen as a 
significant contributor to LULCC, because rising 
urbanization, and population pressure have led to the 
expansion of Dehradun (the number of wards has 
increased from 60 to 100 in 2018)(Dehradun Nagar 
Nigam, 2018). The expansion of BUAs is considered to be 
strongly tied to population increase and rising socio-
economic development (Fanan et al., n.d.) both of which 
have long been recognized as important drivers of LULC 
changes (Chamundeeswari, 2013).  

 
Table 6. Detail matrix of Net Loss/Gain of each land 

use and land cover change 

 
 

On the other hand, the open scrubland and water 
bodies registered; negative growth of -86.45 per cent (-
63.03 km2) and -77.58 per cent (-23.56 km2) 
respectively, the loss of open scrubland and vegetation 
cover area was mainly attributed to the growth of 
agricultural land and BUAs expansion, and the newly 
BUAs were explicitly developed in the sub-urban zones; 
BUAs and open scrubland primarily replaced the areas 
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previously covered by agricultural land and open 
scrubland but located at a lower altitude and around the 
primary roads. The water bodies had witnessed an 
overall negative growth of -77.56 per cent (-23.55 km2) 
of land cover, and it mainly got converted into BUAs 
followed by agricultural land and open scrubland. 
Simultaneously, the vegetation cover and agricultural 
land; both classes have registered a total loss of -2.79 per 
cent (-14.71 Km2) and -3.1 per cent (-7.96 km2) 
accordingly. The most of area of open scrubland has 
been largely changed into agricultural land and BUAs 
and exhibits the strong influence of anthropogenic 
activities.  

 

4. Result and Discussions 
4.1 Land use and land cover change detection  

For the LULC change study, a total of five land area 
classifications were used, namely agricultural land (AL), 
built-up areas (BUAs), open scrubland (O/SL), 
vegetation cover (VC) and waterbodies (WB) have been 
considered, and the supervised MLC technique was 
applied for the in-depth LULC change analysis. 
According to Table 4, the accuracy assessment was 
conducted using the kappa coefficient (k) and overall 
accuracy (OvAc). It determined that the overall accuracy 
in 1989 was 79.42 per cent and 87.46 per cent in 2020. 
While the kappa values were 74.08 and 84.02 per cent 
respectively. This suggested that the highest possible 
level of classification accuracy was established. Tables 5 
to 6 provide a statistical overview of the LULCC in the 

Pachhua dun, Mussoorie, and DMC. The results showed 
that, between 1989 and 2020, a significant portion of the 
Agricultural land area had been converted into BUAs. At 
the same time, vegetation cover and open scrubland 
have been largely converted into agricultural land before 
it gets converted into built-up, supported by (Agarwal et 
al., 2019; Gupta, n.d.; Jana et al., 2020a; Patidar & 
Sankhla, 2015; Taloor et al., 2020; Thapa & Bahuguna, 
2021). Based on the results statistics, the major 
development is directly associated with uncontrolled 
rapid urbanization and population growth, which 
further demands land use for several anthropogenic 
activities like residential, commercial, industrial, and 
infrastructural development and other concrete-led 
development. The special economic zone area - Selakui 
industrial zone of Pachhua dun, and Dehradun urban 
areas provides better job opportunities and standard of 
living, educational, healthcare facilities to the many 
people of nearby villages, blocks, districts, and states. 
Subsequently, this situation motivates people to 
temporary or permanent migration. As a result, most of 
the plain areas of doon valley especially areas of 
agricultural land, open scrubland, water bodies and 
vegetation cover, are highly subjected to developed 
projects and converted into built-up areas. The housing 
prices are cheaper than the city’s core in the peri-urban 
areas and rural area, therefore becomes a preferred 
choice of residential locations for various income groups 
and social classes.  

 

 
Fig. 3 Column graph exhibiting LST mean of the LULC classes of 1989 and 2020 

 
4.2 LULC change and its influence on LST. 

Fig. 3 illustrates the bar graph exhibiting LST mean of 
the LULC classes of 1989 and 2020. The data extraction 
of LST, NDVI, NDBI and SLOPE was obtained using 
fishnet (sample representation) tool available in ArcGIS 
10.8. A total of 1185 points were generated within the 
polygon of the area of interest. The result obtained from 
the Landsat satellite images showed that the mean LST 
and standard deviation (SD) value for Landsat 1989 
image was 13.79°C±2.02 and 17.86°C±2.04 for Landsat 
2020 image. Overall, the area of interest has registered 

the growth of 4.07°C±0.02 respectively. Five land use 
and land cover classes agricultural land, built-up areas, 
open scrubland, vegetation cover and waterbodies have 
been considered to correlated with LST conditions. In 
the first observation period of year 1989, the maximum 
LST value was retrieved from open scrubland (20.48°C), 
followed by vegetation cover (20.04°C) and water bodies 
(19.16°C). Whereas the minimum LST was retrieved 
from vegetation cover (5.50°C) and agricultural land 
(10.40°C). On the other hand, the maximum LST value 
for 2020 was retrieved from vegetation cover (23.17°C) 
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followed by agricultural land (22.73°C) and BUAs 
(22.54°C). Furthermore, the minimum LST value was 
retrieved from vegetation cover (9.26°C), followed by 
BUAs (9.57°C) and agricultural land (16.37°C) as 
illustrated in the Table 7 exhibiting the statistical 
summary of spatio-temporal variation in LST in °C.  

 
Table 7. Statistical summary of Spatio-temporal 

variation in LST in ℃ 

 
Overall, the result of the first observation period 1989 

revealed that the waterbodies (16.38°C±1.32) had the 
highest mean LST value (1989), followed by open 
scrubland (15.77°C±1.06) and BUAs (15.11°C±0.82). 

However, vegetation cover (12.78°C±1.90) had the 
lowest mean LST followed by agricultural land. On the 
other hand, for the year 2020, open scrubland 
(20.26°C±1.17) had the greatest mean LST, followed by 
agricultural land (19.44°C±1.20) and water bodies 
(19.43°C±2.20), while vegetation cover (16.74°C±1.78) 
had the lowest mean LST, followed by BUAs 
(18.75°C±1.63). Hence the result explicitly shows that 
vegetation cover was continuously aided in reducing 
mean LST values in the study area, as the vegetation 
induces more evapotranspiration; it is associated with 
vegetation greening. Consequently, a strongly 
influencing the local climatic conditions.  It is also 
important to mention that the vegetation can also warm 
local temperatures by reducing albedo(Christopher et 
al., 2007; J.C., 1990). The result of the analysis, also 
reveals that the mean LST values have registered a 
noticeable increase, primarily due to more considerable 
LST fluctuation retrieved from BUAs. Which is a paved 
surfaces that tend to absorb solar radiation for longer 
periods, hold infrared radiation longer, and retain heat 
for extended periods than other LULC classes(Liu & 
Zhang, 2011; Lu et al., 2020). 
 
 

 

 
Fig. 5 spatio-temporal variation (1989 and 2020) in LST and LULC in the Selakui region of Pachhua dun. (A) Colour 

Infrared image of Landsat 1989 and 2020 (B) Map of LULC change (C) Map of LST change 
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4.3 LST difference in each LULC class in 1989 and 
2020.  

Fig. 4 illustrates the comparison between the Landsat 
satellite images of 1989 and 2020 using Composite band, 
LULC and LST image; and Fig. 5 depicts the spatio-
temporal variation of LST and LULC in the Selakui region 
of study area. Additionally, Table 8 exhibits the 
Statistical summary of the mean LST difference in each 
LULC class, The mean LST was computed for each LULC 
class over the analysed period using Landsat 1989 and 
2020. It was apparent from the result that the LULC 
classes influences LST values, i.e., LST change depends 
on LULC units. Therefore, investigating each LULC class's 
thermal signatures is essential to comprehend the 
relationship between LULC and LST (Weng et al., 2004). 
The study results show that the spatial extent, pattern, 
and intensity of mean LST have increased outwards from 
the city's core in all directions. Despite the fact that the 
area of interest is predominantly covered with 
vegetation and agricultural land, the results also showed 
that the LULC changing pattern of the research areas 
significantly contributes to the variance of LST. 
However, the overall period of analysis from 1989 to 
2020 gave us the final clear picture of the LST change 
that occurred to the LULC change. The result revealed 
that the highest mean LST rise was registered in 
agricultural land by 4.70℃, followed by open scrubland 
(4.29℃) and vegetation cover (3.95℃), considering the 
agricultural land usually has higher LST than 
BUAs(Kumar et al., 2017), the lowest the mean LST rise 
was registered in water bodies and the BUAs by 3.19℃ 
and 3.91℃. The highest mean LST difference was 
recorded in agricultural land by 4.70℃, followed by open 
scrubland and vegetation cover by 4.29℃ and 3.95℃. 
The lowest mean LST difference was recorded in water 
bodies and BUAs by 3.19℃ and 3.91℃.  After state 
formation on 09-11-2000, the study area has witnessed 
a significant rise in anthropogenic activities, primarily 
the rapid expansion of BUAs caused by population rise 
and urbanization but at the expense of agricultural, open 
scrubland, waterbodies and vegetation land. Fig. 4 
compares the Landsat satellite images of 1989 and 2020 
of the Selaqui region (Sahaspur C.D. Block) of the 
Pachhua Dun, using RGB band combinations, LULC, and 
LST map. It is evident from the figure 5 that, during 
Landsat 1989 image analysis, the LST retrieved from the 
Selaqui region was majorly between 15℃ - 18℃, 
however, in 2020 the LST value retrieved from the same 
region increased significantly, and now it primarily fell 
between 18℃-21℃. The mean LST value retrieved from 
the BUAs was 15.16°C in 1989, and 19.07°C. In 
agricultural land, it has exhibited a mean LST value of 
14.76°C, and 19.46°C in 1989, and 2020 respectively, 
and registered a growth of 4.70°C mean LST between 
1989-2020. Such high mean LST value experienced by 
open scrubland, ephemeral river bed, and agricultural 
land indicates that the radiation-exposed soil and Land 
have greater thermal properties and emit energy, which 

contributes to the warming of the environment.  Thus, 
the analysis achieves consistency and coherence with 
the result obtained by Jana et al.(Jana et al., 2020b). In 
the study area, the evapotranspiration (ET) surfaces 
such as agricultural land, open scrubland, and vegetation 
cover were primarily replaced by non- (ET) surfaces like 
BUAs in LST increase between 1989-2020. Conversion of 
vegetation increases CO2 accumulation in the 
atmosphere, which influences the surface energy 
budget(Islam & Islam, 2014), 

Thereby results confirm the decreasing effect of (ET) 
surfaces (vegetation cover, agricultural land, open 
scrubland, and water bodies) and the increasing effect of 
non-(ET) surface-like BUAs on LST variations, which is 
also aptly highlighted in other studies(Amanollahi et al., 
2016; Reisi et al., 2019; Singh et al., 2017). Additionally, 
to LULC's impact on LST increase, urban areas' 
population also increases LST by rising anthropogenic 
heat discharge(Zhou & Wang, 2011b). Hence 
waterbodies were not significantly contributed to 
minimizing LST during Dec, 1989 and 2020, as LST is 
sensitive to local moisture variations (L. Sun et al., 2013; 
Q. Sun et al., 2017); however, water bodies can regulate 
temperature as it helps in maintaining the atmospheric 
air circulation(Balew & Korme, 2020). The growth of 
BUAs at the expense of vegetation cover, agricultural 
land, open scrubland, and water bodies indicated that 
such expansion and LULCC would continue in the future. 
Similar findings were also observed by (Pal & Ziaul, 
2017a), (Saini & Tiwari, 2017).  
 

4.4 Correlation between NDVI and NDBI.  

 

 

Fig.  6 spatio-temporal variation of NDVI and NDBI in 
the area of interest. 

The result revealed that the Agricultural land and 
open scrubland both have registered high NDVI values 
other than vegetation cover. The mountainous areas of 
the Shivalik/lesser Himalayan range and other forested 
ranges within the research area have yielded the highest 
NDVI values. It is noteworthy that the mean NDVI value 
was less than 0.4 since the NDVI value during the winter 
months of December or January declined, grew, and 
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peaked during the summer month (June and July) (Naif 
et al., 2020). The conversion of the vegetation cover 
areas into BUAs, agricultural land or open scrubland 
results in an LST increase (Mallick et al., n.d.). Table 9 
also illustrated that the mean NDBI and Standard 
deviation (SD) values in 1989 were 0.050±0.096 ranging 
from (-0.436) – (0.229); and for the year 2020 the mean 
and SD value of NDBI was -0.071±0.095 ranged from (-
0.375)- (0.231). The area with high NDBI values was 
retrieved primarily around the Selakui, Kedarwala, 
Vikasnagar, and Dehradun city. 

 

Table 8 Retrieved statistics values of LST, NDVI, and 
NDBI in the study area (1989-2020) 

 
 
 

 

Figure 7 Simple Bar mean NDVI1989, NDVI2020 

 
 

 
    

Figure 8 Simple Bar Mean NDBI1989, NDBI2020 
 

4.5 Correlation Coefficient between LST among SLOPE, 
NDVI and NDBI 

It is essential to highlight that the correlation between 
LST and LULC change contributes to the resolution of 
issues related to human-environment interactions and 
climate  change (Jha et al., 2000). The correlation 
coefficient (r) matrix from the analysis using SPSS 25 is 
shown in Table 9. Correlation levels were found in every 
pair of comparisons at the 0.001 level (2-tailed). The 
outcome revealed that the NDVI and LST had a lower 
correlation than the NDBI and LST, which had a higher 
connection. Conversely, the artificial concrete ground 
surface emits enormous amounts of LST, whereas the 
vegetation surface produces less LST (Li et al., 2017). 
The strength of the relationship between the LST and 
NDVI was found to be weak or low with the (r) value of - 
0.356 (1989), and - 0.079 (2020), (p < 0.001, 2- tailed). 

The result is very consistent with the previous studies 
(L. Chen et al., 2013; Z. Chen et al., 2020). Simultaneously, 
the strength of the relationship between LST and NDBI 
was moderate between 0.5 - 0.7 for all three Landsat 
images with the (r) value of +0.613, and +0.534, (p < 
0.001, 2- tailed), for the year 1989, and 2020 
respectively. The (r) between LST concerning NDVI 
value has exhibited a slight increasing trend, whereas 
between LST and NDBI has shown a slight decrease 
during the observational period of 1989 to 2020. 
Whereas the NDVI and NDBI generated an inverse 
correlation with a value of -0.803 (1989), and -0.799 
(2020), the strength of the relationship was very 
strongly negative. The LST and SLOPE; and SLOPE and 
NDBI have exhibited a negative correlation, and the 
correlation coefficient (r) value between the LST and 
SLOPE was -0.304(1989), and -0.391 (2020), whereas 
the (r) value between the SLOPE and NDBI was -0.160, -
0.143 respectively, and it also indicated that the 
increasing slope degree leads to the decrease in LST 
value and NDBI value. Subsequently, a positive 
relationship was observed between the SLOPE and 
NDVI, and the (r) value between the SLOPE and NDVI 
was 0.193 (1989), 0.185 (2020). subsequently indicated 
that with the increasing SLOPE degree, the NDVI value 
also increased. Hence, it could be generalized that the 
vegetation/forest cover areas are significantly increased 
with the increasing SLOPE value in the study area. The 
(r) value has also witnessed an increasing trend showing 
the increase in the quality and health of vegetation cover 
in the study area. While examining the correlation 
between NDBI and LST; and NDVI and LST within each 
LULC class, we also found out that the (r) is not 
necessarily linear since it may differ between each LULC 
class, as well as being subject to the different 
geographical location and season. Therefore, while 
analysing the accurate LULC and LST relationship, we 
suggested incorporating the local differences is of 
utmost importance for a precise conclusion. 
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4.6 Multiple Linear Regression Model (MLR) 
Table 10 exhibited the Model summary of LST, NDVI, 

Slope, and NDBI obtained using the MLR model; and the 

MLR model was also used to predict the variable for 

quantifying LST. Here, the LST is taken as a dependent 
variable also known as regressand. Whereas NDVI, 
Slope, and NDBI are taken as independent variables (also 
known as regressors) for predicting the LST of any given 
area. The R is a multiple correlation coefficient that is 
used as a gauge for regressand prediction. The R square 
denotes the coefficient of determination, and R values of 
0.680 and higher denote an adequate prediction level. It 
displays the percentage of the variance in the dependent 
variables that the regressors could account for. For the 
years 1989 and 2020, respectively, the R square values 
are 0.413 and 0.484. Therefore, as shown in Table 12, 
NDVI, NDBI, and Slope account for over 41.3 per cent, 

and 48.4 per cent of the variation in the LST. The overall 
MLR model was found to be an excellent fit for the 
provided data by the analysis of variance (ANOVA) 
shown in Table 11. As the alpha value of 0.05 is more 
than the significant value of 0.000, the regressors are 
statistically significant for the prediction of the 
regressand, F (3, 29521) =6927.57 (1989), and 9227.88 
(2020). p < 0.05; Correspondingly, it showed that the 
chosen MLR model fits the data well. The Correlation of 
the Coefficient Table of LST, NDVI, NDBI, and Slope is 
shown in Table 13 along with the unstandardized 
coefficient (B), which illustrates the relationship 
between the LST and other regressors. In contrast, the 
negative value of the Slope shows that the LST starts to 
rise as the Slope begins to fall. 
 

 
 

Table 9 Correlations coefficient (r) matrix of LST, NDVI, SLOPE, and NDBI 
 

 
Table:10. Model summary of LST, NDVI, NDBI and Slope 

 
Model Summary 

Model_1989 R R Square Adjusted R Square Std. Error of the Estimate 

1 .695a 0.483 0.482 1.4541 

a1. Predictors: (Constant), SLOPE, NDBI1989, NDVI1989 

b1. Dependent Variable: LST1989 

Model_2020 R R Square Adjusted R Square Std. Error of the Estimate 

3 .762a 0.581 0.580 1.3215 

a2. Predictors (regressors): (Constant), SLOPE, NDBI2020, NDVI2020 

b2. Dependent Variable (regressand): LST2020 

  
Table 11. ANOVA summary of LST, NDVI, NDBI and SLOPE. 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

 

1
9

8
9

 Regression 2332.73 3 777.58 367.6 .000b 

Residual 2496.98 1181 2.114 
  

Total 4829.71 1184 
   

a1. Dependent Variable: LST1989; b1. Predictors: (Constant), SLOPE, NDBI1989, NDVI1989 

 

2
0

2
0

 Regression 2863.27 3 954.42 546.5 .000b 

Residual 2062.55 1181 1.746 
  

Total 4925.82 1184 
   

a2. Dependent Variable: LST2020; b2. Predictors: (Constant), SLOPE, NDBI2020, NDVI2020 

 

Parameters 

LST NDVI NDBI Slope 

(SRTM) 1989 2020 1989 2020 1989 2020 

LST 1989 1 .850** -.356** -.079** .613** .399** -.304** 

LST 2020 .850** 1 -.396** -.187** .599** .534** -.391** 

NDVI 1989 -.356** -.396** 1 .719** -.803** -.740** .193** 

NDVI 2020 -.079** -.187** .719** 1 -.422** -.799** .185** 

NDBI 1989 .613** .599** -.803** -.422** 1 .719** -.160** 

NDBI 2020 .399** .534** -.740** -.799** .719** 1 -.143** 

Slope -.304** -.391** .193** .185** -.160** -.143** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 12. Correlation of Coefficient table of LST, NDVI, NDBI and Slope. 
 

Coefficientsa 

Model 
Unstandardized Coefficients Standardized Coefficients 

t Sig. 
Collinearity Statistics 

B Std. Error Beta Tolerance VIF 
 

1 

(Constant) a 12.310 0.151 
 

81.408 0.000 - - 

NDVI1989 4.255 0.435 0.426 12.081 0.000 0.352 2.843 

NDBI1989 11.603 0.444 0.917 26.138 0.000 0.356 2.810 

SLOPE -0.044 0.004 -0.239 -11.214 0.000 0.963 1.039 

 

2 

(Constant) b 17.551 0.117 
 

150.437 0.000 - - 

NDVI2020 17.824 0.761 0.739 23.419 0.000 0.356 2.809 

NDBI2020 27.113 0.793 1.071 34.194 0.000 0.361 2.769 

SLOPE -0.070 0.004 -0.375 -19.590 0.000 0.966 1.035 

a2. Dependent Variable: LST1989a and LST2020b 

 
Because LST and NDVI correlations are typically 

positive in the winter and early spring (April) (D. Sun & 
Kafatos, 2007). The outcome also showed a high NDVI 
value. The increase in built-up areas is directly related to 
the rise in LST, according to the positive NDBI value. The 
positive B value of NDBI shows that an increase in 
developed land will result in an increase in temperature, 
proving that LST and NDBI are positively correlated. 
1989 = NDVI (t= 48.209,  p < 0.05), SLOPE (t =  -62.198, 
p < 0.05), and NDBI ( t = 103.375, p < 0.05); 2020 = NDVI 
(t= 29.691,  p < 0.05), SLOPE (t =  -74.372, p < 0.05), and 
NDBI ( t = 98.970, p < 0.05) are significant predictors of 
LST. We concluded that BUAs had a greater impact on 
the LST based on the size of the t-statistics, which was 
supported by standardised coefficients. NDVI and NDBI 
values for LST were derived from Landsat 1989 image. 

While the MLR model likewise projected that the LST 
value would decline by 4.7 units for every unit increase 
in vegetation, it also predicted that the LST value would 
decline by 0.058 units for every unit increase in slope. 
The LST would increase by 11 units for every unit 
increase in the BUAs. The LST, NDVI, and NDBI data 
gathered from Landsat 2020 images supported the 
model's prediction that the LST values would decline by 
2 units for every unit increase in vegetation and by 0.066 
units for every unit increase in slope, respectively. For 
every unit increase in the BUAs, the LST values would 
rise by 9 units. As a result, the general form of the 
equation to forecast LST using Slope, NDBI, and NDVI for 
the Landsat 1989, and 2020 Landsat image would be as 
indicated in Table 13 showing the slope, NDBI, LST, and 
NDVI in respect to the MLR model. 

 
Table 13. Obtained MLR model result between the LST, NDVI, SLOPE and NDBI and the time period, T. 

 
S.N. Equation R2

 P value N 

1. LST1989= 12.310T – (4.255*NDVI) – (-0.044*SLOPE) + (11.603*NDBI) 0.483 0.00 

1
1

8
5

 
 

2. LST2020= 17.551T – (17.824*NDVI) – (-0.070*SLOPE) + (27.113*NDBI) 0.762 0.00 
Predictors: NDVI and NDBI; Dependent variables: LST; Level of Significance (p < 0.001) 

 

 

5. Conclusion
 

In the 31-year study period (1989-2020), the analysis 
investigated the relationships between LST and LULC, 
NDVI, NDBI, and slope. The research results indicate that 
the BUAs significantly contribute to the increase in mean 
LST. Conversely, vegetation cover plays a crucial role in 
mitigating the impacts of increased LST. Likewise, 
during the period spanning from 1989 to 2020, BUAs 
demonstrated a exponential BUAs rise, registering a 
growth rate of +249.45 per cent, expanding substantially 
from 44.23 km2 to 154.56 km2. Besides, the responsible 
predictor of LST and multiple linear regression model 
and the link between NDVI and LST was found to be 
minimum, but the correlation between LST and NDBI 
was moderate in strength. Collectively, the independent 
factors NDBI, NDVI, and Slope explain 41.3 per cent, and 
48.4 per cent of the variation in the LST (dependent 
variable) in 1989, and 2020, respectively. The analysis of 

the MLR model explicitly confirmed that the BUAs have 
become a significant threat to the increase in LST. The 
study also concluded that additional parameters, such as 
soil humidity, moisture, etc., should be included in order 
to improve the MLR model's significance. Moreover, the 
impact of the LULC class's spatiotemporal variation on 
LST indicated that the vegetation cover is regularly 
helping in mean LST decrease and consistently recorded 
the lowest mean LST among all LULC classes. The result 
also found that the open scrubland, BUAs and 
agricultural land were the prime contributors to the 
mean LST rise. The LST mean and SD value was 14.81℃ 
± 1.32 in 1989, and it was increased by 18.82℃ ± 1.57 in 
2020, which showed a tremendous level of rise of 27.07 
percent (4.01℃ ± 0.125) in the mean LST. Such an 
increase in LST values is an outcome of the significant 
level of growth in BUAs and agricultural land, further 
accelerating the cascading effect of LULC change driven 
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by anthropogenic activities. The Dehradun Draft Master 
Plan 2041 which aims to create a sustainable, liveable 
and dynamic Dehradun city, considering existing 
infrastructure, land use patterns, environmental factors 
and proposing solutions for current and future needs. 
Despite these goals, challenges arise, notably the 
haphazard growth of BUAs, leading to issues like 
increasing LST, traffic congestion, air quality decline, and 
the formation of informal settlements in low-lying areas 
and seasonal streambeds. 

However, to enhance the robustness of the analysis, 
additional parameters could be incorporated, as the four 
identified parameters are integral in assessing the 
counter-magnetic aspect of urbanization, particularly 
with Built-Up Areas (BUAs) which plays a pivotal role in 
calculating the other four components: a) BUAs, which 
involve Geo-spatial database of Dehradun city; b) 
Creativity Indices encompassing talent, technology, and 
tolerance indices specific to Dehradun city; c) Reilly's 
Law of Retail Gravitation to measure the attractiveness 
of the location and its impact on investor engagement in 
Dehradun; d) A model of suburban development for 
Mussoorie; e) Geo-spatial analysis of public 
transportation accessibility. 

Conclusively, as a measures of mitigation, the study 
recommended that the government create policies that 
restrict future land encroachment and conversion, 
notably of forested area and water bodies, and make an 
immediate effort to increase the quantity and quality of 
urban vegetation cover in the study area. So that we may, 
respectively, minimize the potential hazard posed by 
future LST rise and LULC change.  
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