Research Article

Antimicrobial and Volatile Compounds Study of Four Spices Commonly Used in Indonesian Cullinary

Alwani Hamad1, M. Gigih Panji Mahardika1, Istifah1, Dwi Hartanti2,*

1Department of Chemical Engineering, Faculty of Engineering, University of Muhammadiyah Purwokerto, Jl. Raya Dukuhwaluh PO Box 202, Banyumas, Central Java, Indonesia 53182
2Faculty of Pharmacy, University of Muhammadiyah Purwokerto, Jl. Raya Dukuhwaluh PO Box 202, Banyumas, Central Java, Indonesia 53182

ARTICLE INFO

Received 10/01/2015
Received in revised form 25/01/2015
Accepted 20/12/2015
Available online 01/1/2016

E-mail address: dwihartantihamad@gmail.com

ABSTRACT

The n-hexane extracts of the aerial parts of Ocimum x citriodorum and the leaves of Cymbopogon citratus, Syzygium aromaticum and Syzygium polyanthum were evaluated for their antimicrobial activity against some food borne microorganisms. Their volatile compounds were analyzed by gas chromatography/mass spectrometry (GC/MS). All extracts inhibited the growth of Bacillus subtilis. The extract of S. polyanthum showed the strongest inhibitory activity against Salmonella typhimurium. The growth of Staphylococcus aureus, Escherichia coli and Vibrio cholerae were not inhibited by all extracts. The major volatile constituent of O. x citriodorum, C. citratus, S. aromaticum and S. polyanthum crude extracts were citral, germacrene D-14-ol, p-eugenol and squalene, respectively.

Keywords: antimicrobial, Cymbopogon citratus, n-hexane extracts, Ocimum x citriodorum, Syzygium aromaticum, Syzygium polyanthum, volatile chemical constituents

1. Introduction

Foodborne illness is a growing public health problem in developing as well as developed countries (Jahan, 2012). In Indonesia, paratyphoid is one of common foodborne illness along with food poisoning caused by Escherichia coli, Vibrio cholerae, Bacillus subtilis, and Staphylococcus aureus (Vollaard et al., 2004). Plant derived products are often considered to be more natural and safer alternatives to chemicals and thus have become popular in the scope of searching novel antimicrobial agents for food and pharmaceutical applications (Han and Bhat, 2014).

Spices have been reported possessing antimicrobial activity (Babu et al., 2011; Joe et al., 2009; Panpatil et al., 2013; Rahman et al., 2010; Sethi et al., 2013; Shan et al., 2007; Vaishnari et al., 2007). Ocimum x citriodorum (lemon basil, Indonesian name: kemangi), Cymbopogon citratus (lemon grass, Indonesian name: sereh) Syzygium aromaticum (clove, Indonesian name: cengkih) and Syzygium polyanthum (bay leaf, Indonesian name: salam) are four spices commonly used in Indonesian culinary. Previously, O. x citriodorum was reported active as antimicrobial against Staphylococcus aureus, S. epidermis, Streptococcus mutans, Lactobacillus casei, Listeria ivanovii, L. monocytogenes, Enterococcus faecalis, E. faecium, Escherichia coli, Proteus mirabilis, and Candida albicans (Carovic-Stanko et al., 2010; Maryati et al., 2007; Thaweboon and Thaweboon, 2009). C. citratus had antimicrobial activity against Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, Desulfovibrio alaskensis, Penicillium expansum, P. verrucosum, Aspergillus flavus, A. ochraceus, and C. albicans (Balakrishnan et al., 2014; Bassolé et al., 2011; Khan and Ahmad, 2012; Korenblum et al., 2013; Nguefack et al., 2009; Paranagama et al., 2003). S. aromaticum essential oil had been known widely as a potent antimicrobial against various bacteria and fungi (Hossain et al., 2014; Joshi et al., 2010; Naveed et al., 2013; Oliveira et al., 2013; Pandey and Singh, 2011; Park et al., 2007; Pinto et al., 2009). S. polyanthum possessed antimicrobial activity against B. subtilis, B. cereus, P. aeruginosa, Salmonella thypi, E. coli, Tricophyton mentagrophytes and C. albicans (Cornelia et al., 2005; Dewanti and Wahyudi, 2011; Kusuma et al., 2011; Murhadi et al., 2007).

In this study, we evaluated the minimal inhibitory concentration (MIC) and volatile chemical constituents of crude extracts of O. x citriodorum, C. citratus, S. aromaticum and S. polyanthum against common foodborne bacteria in Indonesia.
2. Materials and Methods

2.1. Plant materials and chemicals

Fresh aerial parts of *O. x citriodorum* and the leaves of *C. citratus*, *S. aromaticum* and *S. polyanthum* were purchased from the local market at Purwokerto, Indonesia. The plant materials were air dried and pulverized to a fine powder. N-hexane (Sigma-Aldrich) was used as solvent. Nutrient broth (Oxoid) was use as medium for the microorganisms growth.

2.2. Extraction

The dried powder of plant materials were extracted by maceracion with n-hexane as previously described (Har and Ismail, 2012).

2.3. Microbial strains

Five bacterial strains were obtained from the American type culture collection (ATCC; Rockville, MD, USA) as well as the culture collection of the Assessment Service Unit, Airlangga University, Surabaya, Indonesia. They were *Bacillus subtilis* ATCC 6633, *Escherichia coli* ATCC 8739, *Staphylococcus aureus* ATCC 6538, *Salmonella enterica typhimurium* ATCC 14028 and *Vibrio cholera* ATCC 9027. All microorganisms were stocked in appropriate conditions and regenerated before used.

2.4. Determination of MIC

The MIC was examined by broth dilution method in nutrient broth using a method described previously (Al-Reza et al., 2010) with a modification. Briefly, active cultures for MIC determination were prepared by transferring a loopful of cells from the stock cultures to flasks and inoculated in nutrient broth (NB) medium and incubated at 37 °C for 24 h. The cultures were diluted with NB broth to achieve an optical density of 10^7 CFU/mL for the test organisms at the wavelengths of 600 nm by UV/Vis Spectrophotometer. Essential oils were diluted to get the final concentration ranging from 0 to 1000 µg/mL in NB medium. Finally, 20 µL inoculum of each bacteria strain was inoculated and the tests were performed at a final volume of 5 mL. The plates were incubated at 37 °C for 24 h. The lowest concentration of the test samples, which did not show any visual growth of tested organisms after macroscopic evaluation, was determined as MIC, which was expressed in µg/mL.

2.5. Analysis of volatile chemical constituents

The volatile constituents of n-hexane extract of the plants were analyzed using GC-MS system (Agilent 6980N GC System coupled to Agilent 5973 inert MSD detector), equipped with a ZB-5 capillary column (30 m x 0.25 mm x 0.25 µm). The carrier gas was helium at flow rate of 1.3 ml/min, and 2 µL of sample was injected. The electron impact technique (70eV) was used. The injector and detector temperatures were 250 °C and 230 °C.

3. Results and Discussion

MIC of crude extracts of spices are shown in table 1. Crude extracts of *O. x citriodorum*, *C. citratus*, *S. polyanthum* and *S. aromaticum* inhibited the growth of *B. subtilis* with MIC 31.25, 31.25, 125 and 62.5 µg/mL, respectively. *S. polyanthum* crude extract showed a stronger inhibitory activity against *S. enterica typhimurium* (MIC = 31.25 µg/mL) than those of *S. aromaticum*, *O. x citriodorum* and *C. citratus*. The MIC of *S. aureus*, *E. coli* and *V. cholera* were not inhibited by all crude extracts.

The polarity of solvent used in extraction of the plants plays an important role. They determine the active compounds extracted and their bioactivity. The previous report showed that MIC of n-hexane extract of *O. x citriodorum* against *S. aureus* and *S. typhimurium* were much higher than our study, they were more than 10000 µg/mL (Ekwenchi et al., 2014).

The previous data of MIC of methanolic and ethanolic extracts of *C. citratus* against *E. coli*, *Salmonella* sp., *S. aureus* and *B. subtilis* were much higher compare to the result of our study (Fagbemi et al., 2009; Ushimaru et al., 2007). Chloroform extract of *C. citratus* possessed the strongest antimicrobial activity, its MIC against *E. coli*, *S. aureus* and *S. typhi* were 20.0, 24.0 and 14.0 µg/mL, respectively (Ewansiha et al., 2012), and is lower than our data.

The MIC of n-hexane extract of *S. aromaticum* against *B. subtilis* was considerably lower than data reported previously (Pundir et al., 2010). Our data is consistent with previously reported MIC of methanolic and ethanolic extracts of *S. aromaticum* against *S. aureus*, *S. typhimurium* and *E. coli*, they were higher than 1000 µg/mL (Khan et al., 2009; Pandey and Singh, 2011; Ushimaru et al., 2007).

Extract of *S. polyanthum* is active against *B. subtilis* and *S. typhimurium* with a relatively low MIC, they are 62.5 and 31.25 µg/mL. To the best of our knowledge, this is the first report on the MIC of n-hexane extract of *S. polyanthum*.

The antimicrobial activity spices is usually correlated with their essential oils. Some constituents of essential oils are nonpolar, so they can be extracted.

Table 1. MIC of crude extracts of spices against tested microorganisms

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>O. x citriodorum</th>
<th>C. citratus</th>
<th>S. aromaticum</th>
<th>S. polyanthum</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. subtilis</td>
<td>31.25</td>
<td>31.25</td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>E. coli</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>S. aureus</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>1000</td>
<td>1000</td>
<td>>1000</td>
<td>31.25</td>
</tr>
<tr>
<td>V. cholera</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
</tbody>
</table>
with n-hexane (Schmidt, 2010). In our study, we conducted GC-MS analysis to determine the volatile compounds in n-hexane extract of O. x citriodorum, C. citratus, S. aromaticum and S. polyanthum. The major volatile compounds of the spices are shown at table 2.

The antimicrobial activity of crude extract of spices is related to their chemical constituents. It has been reported that essential oils containing aldehydes or phenols showed the highest antibacterial activity, followed by essential oils containing terpene alcohols. Other essential oils, containing ketones or esters, acetate had much weaker activity. While volatile oils containing terpene hydrocarbons were usually inactive (Bassolé and Juliani, 2012). Citral A and B are aldehyde monoterpenes and responsible for antimicrobial activity of O. x citriodorum extract against B. subtilis and S. typhimurium. Both compounds have been reported possessing anticrobial activity (Belletti et al., 2010; Sato et al., 2006; Somolinos et al., 2009).

The volatile compounds of C. citratus that might be responsible for its antimicrobial activity are germacrene D-4-ol (a terpene alcohol) and octadecyl aldehyde. p-eugenol is the compound responsible for antimicrobial activity of S. aromaticum extract against B. subtilis. p-eugenol has been reported widely as a natural preservative. p- eugenol is the compound responsible for antimicrobial activity and minimum inhibitory concentration values against various microorganisms (Ali et al., 2005; Leite et al., 2007; Michiels et al., 2007; Oyedemi et al., 2009; Tippayatum and Chonhenchob, 2007).

S. polyanthum possesses the best antimicrobial activity among four spices. Its major volatile compounds were squalene (30.44%) and n-hexatriacontane (6.57%), both are hydrocarbons considered inactive as antimicrobial. Hence, the compound responsible for antimicrobial activity might be not volatile compound and therefore was not detected by GC-MS.

Table 2. The major volatile compounds of n-hexane extract of the spices

<table>
<thead>
<tr>
<th>No</th>
<th>Compound Name</th>
<th>RT (min)</th>
<th>O. x citriodorum</th>
<th>C. citratus</th>
<th>S. aromaticum</th>
<th>S. polyanthum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-methyltoluene</td>
<td>4.411</td>
<td>-</td>
<td>14.679</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>α-dimethylbenzene</td>
<td>4.602</td>
<td>-</td>
<td>11.249</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>citral B</td>
<td>23.325</td>
<td>16.022</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>citral A</td>
<td>25.319</td>
<td>23.696</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>p-eugenol</td>
<td>30.115</td>
<td>-</td>
<td>-</td>
<td>55.607</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>β-caryophyllene</td>
<td>32.179</td>
<td>-</td>
<td>-</td>
<td>12.799</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>squalene</td>
<td>59.759</td>
<td>4.525</td>
<td>-</td>
<td>3.075</td>
<td>30.445</td>
</tr>
<tr>
<td>8</td>
<td>1,19-eicosadiene</td>
<td>62.482</td>
<td>-</td>
<td>12.972</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>n-hexatriacontane</td>
<td>63.297</td>
<td>-</td>
<td>-</td>
<td>6.573</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>n-octacosane</td>
<td>63.343</td>
<td>8.275</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>n-triacontane</td>
<td>64.703</td>
<td>13.448</td>
<td>-</td>
<td>8.674</td>
<td>0.940</td>
</tr>
<tr>
<td>12</td>
<td>germacrene D-4-ol</td>
<td>64.813</td>
<td>-</td>
<td>16.277</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>octadecyl aldehyde</td>
<td>65.340</td>
<td>-</td>
<td>10.473</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

5. Acknowledgement

6. References

