Tinjauan Perubahan Stress Coulomb Ko-Seismik Pada Sekuens Gempa Palu M 7,5 28 September 2018

https://doi.org/10.22146/jfi.v24i3.58237

Elvira Mardhatillah(1*), Ade Anggraini(2), Mochamad Nukman(3)

(1) Universitas Gadjah Mada
(2) Univeristas Gadjah Mada
(3) 
(*) Corresponding Author

Abstract


Pada tanggal 28 September 2018 Kota Palu dan sekitarnya diguncang gempa dengan kekuatan M 7,5. Gempa tersebut diambil dari bantuan gempa di mana tujuh diberikan memiliki kekuatan yang cukup besar (M> 4,5). Untuk memahami interaksi gempa utama dan gempa susulan, pada penelitian ini dilakukan analisis perubahan stres. Dengan menggunakan program Coulomb 3.3, perubahan stres Coulomb dihitung secara statistik berdasarkan model patahan sumber (gempa utama) dan perubahan sumber patahan penerima (gempa susulan). Dalam penelitian ini digunakan enam (6) model patahan sumber dari studio yang sudah ada sebelumnya yaitu berdasarkan pengolahan data InSAR, teleseismik, dan broadband, serta satu (1) model yang disediakan bidang patahan segmen tunggal dengan distribusi slip yang seragam. Berhubungan dengan stres Coulomb statistik dilakukan dengan mode yang ditentukan kesalahan sedangkan kesalahan penerima merupakan tujuh gempa susulan yang memiliki magnitudo signifikan (M> 4,5). Model baru yang dibangun memiliki perhitungan perubahan stres Coulomb statistik di nodal pesawat I menunjukkan empat dari tujuh gempa susulan (57%) dan nodal pesawat II enam dari tujuh gempa susulan (86%) berada pada pola merah (nilai stres Coulomb positif). Hasil perhitungan besarnya gempa susulan terletak pada pola merah () yaitu daerah dengan peningkatan stres atau dengan kata lain gempa susulan tersebut dipicu oleh gempa utama. Model patahan dengan dua segmen patahan yang terletak di daratan dan di laut, merupakan model bidang patahan yang terbaik yang dapat menjelaskan tentang gempa susulan . Dibandingkan dengan model lain, model ini memiliki persentase terbesar dari tujuh gempa susulan yang terjadi pada pola merah. Peta distribusi Peningkatan stres yang disebabkan oleh gempa utama adalah data penting untuk mitigasi bencana. Penelitian ini dapat memberikan informasi awal untuk memperbaiki daerah yang memiliki potensi menjadi tempat yang disetujui gempa di masa datang.

 

Kata kunci: stres Coulomb, gempa Palu 2018, bahaya gempa


Keywords


stress Coulomb, gempa Palu 2018, bahaya gempa

Full Text:

PDF


References

  1. Ahadov, B., & Jin, S. 2019. Effects of Stress Coulomb change on Mw > 6 earthquakes in the Caucasus region. Physics of the Earth and Planetary Interiors, 297(January), 106326.
  2. Aki K and Richards PG. 1980. Quantitative Seismology. 932 pp., W.H. Freeman & Co., New York
  3. Aki K and Richards PG 2002. Quantitative Seismology, 2nd Edn. San Francisco: University Science Books Beaudouin, Th.,
  4. Bellier, O., Sebrier, M., 2003. Champs de contrainte et de deformation actuels de la region de Sulawesi (Indonesia): implications geodynamiques. Bull. Soc. Geol. Fr. 174, 305-317.
  5. Bellier, O.,Seward, D., Beaudouin, T., Se, M., Villeneuve, M., Putranto, E., & Ce, P. 2006. Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi ( Indonesia ). 413, 201–220.
  6. Fang, J., Xu, C., Wen, Y., Wang, S., Xu, G., Zhao, Y., & Yi, L. 2019. The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sensing, 11(11), 1–15.
  7. Freed, A. M. 2005. Earthquake Triggering By Static, Dynamic, and Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367.
  8. Gunawan, E., Widiyantoro, S., Supendi, P., & Nishimura, T. 2020. Geodesy and Geodynamics Identifying the most explainable fault ruptured of the 2018 Palu- Donggala earthquake in Indonesia using Coulomb failure stress and geological fi eld report. Geodesy and Geodynamics, (May), 1–6.
  9. Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353–431.
  10. Hamilton, W. 1979. Tectonics of the Indonesian region. U.S.Geol. Survey Prof. Paper 1078:1-345
  11. Harris, R. A. 1998. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10), 24347–24358.
  12. He, L., Feng, G., Li, Z., Feng, Z., Gao, H., & Wu, X. 2019. Source parameters and slip distribution of the 2018 Mw 7.5 Palu, Indonesia earthquake estimated from space-based geodesy. Tectonophysics, Vol. 772.
  13. Hui, G., Li, S., Wang, P., Suo, Y., Wang, Q., & Somerville, I. D. 2018. Linkage between reactivation of the sinistral strike-slip faults and 28 September 2018 Mw7.5 Palu earthquake, Indonesia. Science Bulletin, 63(24), 1635–1640.
  14. Lee, S., Wong, T., Lin, T., & Liu, T. 2019. Complex Triggering Supershear Rupture of the 2018 Mw 7.5 Palu, Indonesia, Earthquake Determined from Teleseismic Source Inversion. Seismological Research Letters, 90(6), 2111–2120.
  15. Katili, J.A., 1975. Volcanism and plate tectonics in the Indonesian island arcs. Tectonophysics 26.
  16. King, G. C. P., Stein, R. S., & Lin, J. 1994. Static Stress Changes and the Triggering of earthquake : Bulletin of the seismological Society of America, v. 84, No.3,p. 935-953.
  17. Socquet, A., Simons, W., Vigny, C., Mccaffrey, R., & Subarya, C. 2006. Microblock rotations and fault coupling in SE Asia triple junction ( Sulawesi , Indonesia ) from GPS and earthquake slip vector data Microblock rotations and fault coupling in SE Asia triple junction ( Sulawesi , Indonesia ) from GPS and earthquake slip v. (August). Journal of Geophysical Research.
  18. Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. 2019. Evidence of Supershear During the 2018 magnitude 7.5 Palu Earthquake From Space Geodesy. Nature Geoscience.
  19. Song, X., Zhang, Y., Shan, X., Liu, Y., Gong, W., & Qu, C. 2019. Geodetic Observations of the 2018 Mw 7.5 Sulawesi Earthquake and Its Implications for the Kinematics of the Palu Fault. Geophysical Research Letters, 46(8), 4212–4220.
  20. Tim Pusat Studi Gempa Nasional. 2018. Kajian Gempa Palu Provinsi Sulawesi Tengah 28 September 2018. In Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat (Vol. 53).
  21. Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. 2011. Coulomb 3.3 Graphic-rich deformation & stress-change software for earthquake, tectonic and volcano research and teaching - User Guide. 
  22. USGS Open-File Report 2011-1060, 63.
  23. Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., …
  24. Gabriel, A. A. 2019. Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami. Pure and Applied Geophysics, 176(10), 4069–4109.
  25. Van Leeuwen, Th., Muhardjo, M., 2005. Stratigraphy and tectonic setting of the creataceous and Paleogene vocanic-sedimentary successions in northwest Sulawesi, Indonesia: implication for the cenozoic evolution of Western and Northern Sulawesi, J. Asian Earth Sci. 25, 481-511.
  26. Wang, Y., Feng, W., Chen, K., & Samsonov, S. 2019. Source characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, earthquake derived from the advanced land observation satellite 2 data. Remote Sensing, 11(17), 1–16.
  27. Well, D.L., and K.J. Coppersmith. 1994. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement : Bulletin of the Seismological Society of America, v. 84, p. 974-1002
  28. Zhang, Y., Chen, Y. T., & Feng, W. 2019. Complex multiple-segment ruptures of the 28 September 2018, Sulawesi, Indonesia, earthquake. Science Bulletin, 64(10), 650–652.
  29. Zhou, Z., Kusky, T. M., & Tang, C. C. 2019. Stress Coulomb change pattern and aftershock distributions associated with a blind low-angle megathrust fault, Nepalese Himalaya. Tectonophysics, 767(July), 228161. https://earthquake.usgs.gov/earthquakes/search/ [diakses 25 Desember 2019] https://bnpb.cloud/dibi/laporan5 [diakses 25 Desember 2019]



DOI: https://doi.org/10.22146/jfi.v24i3.58237

Article Metrics

Abstract views : 819 | views : 1200

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Elvira Mardhatillah, Ade Anggraini, Mochamad Nukman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JFI Editorial Office

Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Sekip Utara PO BOX BLS 21, 55281, Yogyakarta, Indonesia

Email: jfi.mipa@ugm.ac.id

JFI is indexed by:


Creative Commons License
Jurnal Fisika Indonesia, its website and the articles published are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Social media icon made by Freepik from www.flaticon.com

Social media icon made by Freepik from www.flaticon.com

web
analytics View My Stats