The Study of Seeing Characteristic at the UAD Observatory on Procyon, Sirius, Spica, Nunki, Altair, and Vega using Celestron C6-N telescope

Ricka Tanzilla(1), Yudhiakto Pramudya(2*), M. Khairul Ardi(3), Okimustava Okimustava(4)

(1) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(2) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(3) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(4) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(*) Corresponding Author


Astronomical observatories can be declared feasible if they have a good condition such as a dark sky, relatively little cloud coverage, relatively low light pollution, and small air turbulence or seeing. The UAD (Universitas Ahmad Dahlan) observatory was measuring the seeing characteristic to assess the feasibility condition. The DIMM method (Differential Image Motion Monitor) was utilized to get the measurement in April, May, and September 2019. The 150 mm diameter Celestron C6-N telescope was used as the instrument to get the star images. The characteristics of a good seeing value on April 10, 2019, are Procyon star with a value of 0.2 arc seconds, and on September 18, 2019, the Vega star with a value of 1.6 arc seconds. Analysis of the seeing characteristic at the UAD Observatory can be used as a reference for observers on star selection, and the operation of the telescope


seeing; DIMM; observatory; turbulence; atmosphere

Full Text:



  1. Mahasena P, Akbar EI, Yusuf M, Hidayat T, Dermawan B, Herdiwijaya D, et al. Pengukuran Seeing di Sekitar Gunung Timau, Nusa Tenggara Timur. 2013;p. 2–4.
  2. Cherubini T, Businger S, Lyman R, Chun M. Modeling optical turbulence and seeing over Mauna Kea. Journal of Applied Meteorology and Climatology. 2008;47(4):1140–1155.
  3. Floyd DJE, Thomas-Osip J, Prieto G. Seeing, wind, and outer scale effects on image quality at the magellan telescopes. Publications of the Astronomical Society of the Pacific. 2010;122(892):731.
  4. Aime C, Roddier F. Imaging through turbulence with telescope arrays. Optics Communications. 1976;19(1):57–60.
  5. Ahmad N, Loon CW, Syukor MS, Haron S, Zainuddin MZ, Tahar MR. The astronomical seeing measurements at Langkawi National Observatory. In: 2015 International Conference on Space Science and Communication (IconSpace). IEEE; 2015. p. 339–342.
  6. Kornilov V, Tokovinin A, Shatsky N, Voziakova O, Potanin S, Safonov B. Combined MASS–DIMM instruments for atmospheric turbulence studies. Monthly Notices of the Royal Astronomical Society. 2007;382(3):1268–1278.
  7. Danesh A, Khosroshahi HG, Javanmardi B, Molaeinezhad A, Abedini Y, Altafi H, et al. Iranian national observatory project: seeing measurements at mount Gargash. Experimental Astronomy. 2019;47(1-2):145–160.
  8. Tanzilla R, Jauhari I, Pramudya Y. Measurement Eccentricity the Moon’s Orbit with Image Analysis Technique by Using Tracker Software. Indonesian Review of Physics. 2018;1(1):19–25.
  9. Raisal AY, Pramudya Y, Okimustafa O, Muchlas M. The moon phases influence on the beginning of astronomical dawn determination in Yogyakarta. In: International Journal of Science and Applied Science: Conference Series. vol. 2. UNS; 2017. p. 1–7.
  10. Kolář J, Prudký J. How to measure seeing. European Association for Astronomy Education (EAAE), Online course available: How to measure seeing pdf;.
  11. Hege EK, Jefferies SM, Lloyd-Hart M. Computing and telescopes at the frontiers of optical astronomy. Computing in Science & Engineering. 2003;5(6):42–51.
  12. Tritton DJ. Physical fluid dynamics. Springer Science & Business Media; 2012.
  13. Moulick R. Good Morning Science. India. 2017;p. 1–7.
  14. Bakker A. Lecture 9-kolmogorov’s theory applied computational fluid c Fluent Inc. 2002;. dynamics. Educational aterial
  15. Darmawan S. Pengembangan model turbulen RNG KE untuk aplikasi CFD pada runner cross flow dalam komponen urbin gas mikro bioenergi proto X 2a= RNG KE turbulence model development for cfd application on cross flow runner of a proto x 2a bioenergy micro gas turbine. 2015;.
  16. Martin HM. Image motion as a measure of seeing quality. Publications of the Astronomical Society of the Pacific. 1987;99(622):1360.
  17. Fried DL. Statistics of a geometric representation of wavefront distortion. JoSA. 1965;55(11):1427–1435.
  18. Tokovinin A. From differential image motion to seeing. Publications of the Astronomical Society of the Pacific. 2002;114(800):1156.
  19. Ruler M. How to Find FWHM; 2017. Available from:
  20. Rana T. Full width at half maximum; 2018. Available from:{%}5C/index.php?title= Full{_}width{_}at{_}half{_}maximum{&}oldid=864676968.
  21. Martinez P, Kolb J, Sarazin M, Tokovinin A. On the difference between seeing and image quality: when the turbulence outer scale enters the game. ESO Messenger. 2010;141:5.
  22. Vernin J, Munoz-Tunon C. Measuring astronomical seeing: the DA/IAC DIMM. Publications of the Astronomical Society of the Pacific. 1995;107(709):265.
  23. Brandt PN. Measurement of solar image motion and blurring. Solar Physics. 1970;13:243–246.
  24. Stock J, Keller G. Astronomical seeing. tele. 1961;p. 138.
  25. Sarazin M, Roddier F. The ESO differential image motion monitor. Astronomy and Astrophysics. 1990;227:294–300.
  26. Douglass AE. Scales of seeing. 1898;.
  27. Hidayat T, Mahasena P, Dermawan B, Herdiwijaya D, Setyanto H, Irfan M, et al. Developing information system on lunar crescent observations. Journal of Mathematical and Fundamental Sciences. 2010;42(1):67–80.


Article Metrics

Abstract views : 671 | views : 572


  • There are currently no refbacks.

Copyright (c) 2022 Yudhiakto Pramudya, Ricka Tanzilla, M. Khairul Ardi, Okimustava Okimustava

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JFI Editorial Office

Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Sekip Utara PO BOX BLS 21, 55281, Yogyakarta, Indonesia


JFI is indexed by:

Creative Commons License
Jurnal Fisika Indonesia, its website and the articles published are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Social media icon made by Freepik from

Social media icon made by Freepik from

analytics View My Stats