Pengamatan Surface Plasmon Resonance pada ZnO Nanorods dengan Menggunakan Konfigurasi Prisma/Au/ZnO

https://doi.org/10.22146/jfi.v23i1.27772

Rina Dewi Mayasari(1*), Ajeng Novita Sari(2), Aditya Eka Mulyono(3), Agus Setyo Budi(4), Ratno Nuryadi(5)

(1) Badan Pengkajian dan Penerapan Teknologi
(2) 
(3) 
(4) 
(5) 
(*) Corresponding Author

Abstract


Pengamatan fenomena surface plasmon resonance (SPR) telah berhasil dilakukan pada ZnO nanorods yang ditumbuhkan di atas lapisan tipis emas. Sistem SPR menggunakan konfigurasi Kretschmann termodifikasi dimana permukaan prisma dideposisi dengan lapisan tipis emas dan ZnO nanorods (prisma/Au/ZnO). Penumbuhan ZnO nanorods menggunakan metode hidrotermal dengan dua tahapan, yaitu pelapisan ZnO seed dan penumbuhan rods. Waktu penumbuhan divariasikan selama 5 menit, 2 jam, dan 4 jam, pada suhu 95 °C yang diikuti dengan annealing pada suhu 500 °C selama 1 jam. Struktur ZnO dikarakterisasi dengan X-ray diffraction (XRD), field emission scanning electron microscope - energy dispersive X-ray spectroscopy (FESEM-EDS), serta diamati fenomena SPR melalui grafik attenuated total reflection (ATR). Hasil karakterisasi menunjukkan bahwa ZnO nanorods (2 jam dan 4 jam) memiliki struktur kristal heksagonal dengan distribusi ukuran diameter pada rentang 20 nm – 60 nm. Fenomena SPR hanya teramati pada nanopartikel ZnO (5 menit) pada sudut SPR (θSPR) 58,2°. Fenomena SPR tidak terlihat pada ZnO nanorods (2 jam dan 4 jam) dikarenakan panjang rods melebihi 100 nm.

Keywords


surface plasmon resonance; ZnO nanorods; lapisan tipis emas; konfigurasi Kretschmann; hidrotermal

Full Text:

PDF


References

  1. Tugaswati AT. Emisi Gas Buang Kendaraan Bermotor dan Dampaknya Terhadap Kesehatan; 2019. Available from: http://www.kpbb.org/makalah_ind/.
  2. Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, et al. Highly Sensitive Detection of DNA Hybridization on Commercialized Graphene Coated Surface Plasmon Resonance Interfaces. Anal Chem. 2014;18(22):112–116.
  3. Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem Rev. 2008;108(2):462–493.
  4. Nuryadi R, Mayasari RD. ZnO/Au-based Surface Plasmon Resonance for CO2 Gas Sensing. Appl Phys A. 2015;122(33).
  5. Mayasari RD, Wardani DP, Megasari K, Saputra WH, Abraha K. Theoretical Study on the Differences Between Hazardous and Safety Preservative Substances Using Surface Plasmon Resonance Based Biosensor. In: Proceeding 186th Symp. Sustain. Humanosph.; 2011. p. 254–258.
  6. Ashiba H, Sugiyama Y, Wang X, Shirato H, Moriguchi KH, Taniguchi K, et al. Detection of Nanovirus Virus-like Particles Using a Surface Plasmon Resonance-assissted Fluoroimmunosensor Optimized for Quantum Dot Fluorescent Labels. Biosens Bioelectron. 2017;93:260–266.
  7. Tabassum R, Mishraa SK, Gupta BD. Surface Plasmon Resonance-based Fiber Optic Hydrogen Sulphide Gas Sensor Utilizing Oxide Sensing. In: Proceeding 30th Annu. Int. IEEE EMBS Conf.; 2008. p. 5757–5760.
  8. Tabassum R, Gupta BD. Surface Plasmon Resonance based Fiber Optic Detection of Chlorine Utilizing Polyvinylpyrolidone Supported Zinc Oxide Thin Films. Analyst. 2015;140:1863–1870.
  9. Dinesh VP, Biji P, Prasad AK, Tyagi AK. Enhanced Ammonia Sensing Properties Using Au decorated ZnO Nanorods. In: Proceeding IEEE Sensors; 2013. p. 1–4.
  10. Watanabe K, Matsumoto K, Ohgaki T, Sakaguchi I, Ohashi N, Hishita S, et al. Development of ZnO-based Surface Plasmon Resonance Gas Sensor and Analysis of UV Irradiation Effect on NO2 Desorption from ZnO Thin Films. J Ceram Soc Japan. 2010;118(3):193–196.
  11. Zhang SL, Lim JO, Huh JS, Lee W. Selective Growth of ZnO Nanorods and Its Gas Sensor Application. IEEE Sens J. 2012;12(11):3143–3148.
  12. Nguyen CPT, La PPH, Trinh TT, Le TAH, Bong S, Jang K, et al. Fabrication of ZnO Nanorods for Gas Sensing Applications Using Hydrothermal Method. J Nanosci Nanotechnol. 2014;14:6261–6265.



DOI: https://doi.org/10.22146/jfi.v23i1.27772

Article Metrics

Abstract views : 1563 | views : 2331

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Rina Dewi Mayasari, Ajeng Novita Sari, Aditya Eka Mulyono, Agus Setyo Budi, Ratno Nuryadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JFI Editorial Office

Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Sekip Utara PO BOX BLS 21, 55281, Yogyakarta, Indonesia

Email: jfi.mipa@ugm.ac.id

JFI is indexed by:


Creative Commons License
Jurnal Fisika Indonesia, its website and the articles published are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Social media icon made by Freepik from www.flaticon.com

Social media icon made by Freepik from www.flaticon.com

web
analytics View My Stats