
Fima Ardianto Putra

ARTIKEL RISET

On the Semiclassical Approach of the Heisenberg
Uncertainty Relation in the Strong Gravitational
Field of Static Blackhole
Fima Ardianto Putra

Abstract

Heisenberg Uncertainty and Equivalence Principle are the fundamental aspect respectively in Quantum Mechanic
and General Relativity. Combination of these principles can be stated in the expression of Heisenberg uncertainty

relation near the strong gravitational field i.e. ∆p∆r ≥ ~/2
1− 2GM/〈r〉

c2

and ∆E∆t ≥ ~/2
1− 2GM/〈r〉

c2

. While for the weak

gravitational field, both relations revert to ∆p∆r ∼ ~/2 and ∆E∆t ∼ ~/2 . It means that globally, uncertainty
principle does not invariant. This work also shows local stationary observation between two nearby points along
the radial direction of blackhole. The result shows that the lower point has larger uncertainty limit than that of
the upper point, i.e. ∆pA∆rA = ∆pg∆rg(1− 2gH

c2 + ...). Hence locally, uncertainty principle does not invariant
also. Through Equivalence Principle, we can see that gravitation can affect Heisenberg Uncertainty relation.
This gives the impact to our’s viewpoint about quantum phenomena in the presence of gravitation.

Keywords: Heisenberg Uncertainty Principle; Equivalence Principle; gravitational field.

Introduction
In the study of Hawking radiation, the very strong
gravitational field near the Schwarezschild radius can
generate pair production [1]. Particle move out and
antiparticle move in toward the Schwarezschild radius.
We have known that the pair production based on
quantum field theory is explained by Heisenberg
uncertainty [2]. On the other hand, the space and
time around massive object like blackhole are affected
by gravitation. There has been establish result of
Schwarezschild metric that gravitational time dilation
and length contraction along the radial coordinate are
depend on the ratio of mass with respect to the radius
of the blackhole [2]. That reason is intriguing for us
to ask about how is the Heisenberg uncertainty in the
context of the gravitational time dilation and length
contraction?.

On another hand, Weak Equivalence Principle guides
us to the understanding that inersial force equivalent
with gravitational one [3]. It also valid if two forces are
taken in to account relativisticly for the test particle
[4]. As the consequence, if an integration is worked
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to both of them along the radial distance r in local
region, we obtain potencial energy difference. Then
based on the energy conservation, we obtain kinetic
energy difference that yields the velocity of particle
with respect to the blackhole. This velocity depends
on the mass-radius ratio, like the factor which makes
gravitational time dilation and length contraction.
So, equivalence principle provides explanation that
relativistic kinetic energy and momentum depend on
the ratio M/r. The question is how the ratio M/r
affects the uncertainty of both kinetic energy and
momentum such a way that this phenomenon appears
in the Heisenberg uncertainty representation?.

The question about whether ratio M/r can affect the
uncertainty of time, position, energy, and momentum
or not, will bring us to the more fundamental question
i.e. Does the Heisenberg uncertainty relation invariant
in the presence of gravitation?. If it does, so it will
give the impact to our’s viewpoint about quantum
phenomena in the presence of gravitation.

Based on the paper [5], Kentosh and Mohageg
analyzed GPS (Global Positioning System) test to
determine the LPI (Local Position Invariance) of
Planck constant along the radial distance of the
earth. The result shows that the Planck constant is
invarian in the such limit which is parameterized by
βh < 0.007, with βh explain a violation of LPI.
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It indicates the existence of limited invariance zone
of Planck constant. The value of this constant will
change along radial direction according to relation
~x/~o = (1 + βh∆U/c2). So it is very reasonable to
be connected with Heisenberg uncertainty invariance
in the gravitational field.

Some considerations above, I propose to reconcile
between General Relativity and Quantum Mechanic
through both equivalence and uncertainty principle.
Because those principles are very fundamental.
Based on my hypothesis, properly they are linked
uniquely such a way that can be oriented to the
invariance aspect of Heisenberg uncertainty relation
itself. In this paper, I study how the invariance of
Heisenberg uncertainty relation in the gravitational
field through Equivalence Principle to look for
Heisenberg uncertainty which is consistent with the
theory of gravitation.

In this study, I use the semiclasiccal approach by
viewing the uncertainty relation in de Broglie wave
packet. It is so, because according to the Ehrenfest
theorem, the average value of uncertainty connects
with the classical domain. So, it can be viewed in the
context of Einstein relativity theory.

1. Equivalence Principle in Ehrenfest
Theorem’s Viewpoint
Special Relativity is the theory which prevails in the
flat spacetime, while General Relativity prevails in
the curve one. So Special Relativity is just locally
consistent with respect to General Relativity [2]. It can
be said that in the tiny region of vaccum space around
the massive object, the condition approximates Special
Relativity (i.e. the tangen space) which Relativistic
Quantum Mechanic i.e. superposition principle can
be valid enough. It requires that gµυ ≈ ηµυ or
specificly gµυ(p) = ηµυ(p). This is what Equivalence
Principle means. In this condition, locally we can
build pseudo-Euclidean (Minkowskian) coordinate by
transforming the metric tensor of general coordinate
gµυ to the metric tensor of Cartesian (inersial)
coordinate ηµυ [2].

Equivalence principle shows that according to the
non-inersial (accelerated) observers i.e. observers that
are placed stationary in the tiny regions along radial
distance from the massive object’s surface up to the
very far place which gravitation is weak, They can
view that they are in the inersial reference frames
(flat space) with presence of gravitation that is viewed
as a type of force [6]. Because we cannot distinguish
these frames with non-inersia (accelerated) reference
frame where inersia force appears [2, 6], so Fi = Fg
i.e. m0a = GMm0

r2 (in the form of non-relativistic).
It shows that an object in the tiny region of vacuum

space around the massive object, the gravitation field
is almost uniform so it cannot be distinguished with
the uniform accelerated frame [2, 3, 4, 6].

When we integrate both left and right hand side of
m0a = GMm0

r2 with respect to the radial distance,
so based on the energy conservation we obtain
the relation between v and gravitational potential
which has been established in Newtonian picture, i.e.
1
2m0v

2 = GMm0

r2 . This equation can be obtained from
equivalence principle in the non-relativistic form which
v is the escape speed of particle from gravitational
bound of a static object with mass M [7], In the
context of blackhole, if v = c, so r = RS , but the
energy is still in the non-relativistic form. Then by
using v2 = 2GM

r , we obtain the relativistic kinetic
energy of particle which is written in the following
binomial expantion

1

2
m0v

2+
3

8

m0v
4

c2
+... =

GMm0

r
+

3

8

m0G
2M2

c2r2
+... (1)

The first term of both left and right hand side
are like in Newtonian form with the addition terms
giving the relativistic correction. If Eq.(1) is expressed

by Lorentz factor, we get that m0c
2√

1− v2

c2

− m0c
2 =

m0c
2√

1− 2GM
rc2

− m0c
2. It means that in the relativistic

form, equivalence principle prevails, such as in the
blackhole case [4]. From the relation above, we can

state that γ = 1/
√

1− 2GM/r
c2 . It shows that the

particle velocity is the vector field (the function of
r) around the blackhole. It is the consequence of
equivalence principle. Based on the Ehrenfest theorem,
v is connected with average velocity 〈v〉 i.e. the group
velocity vg in the picture of de Broglie wave packet that
exhibits correspondence to the classical limit [8, 9].

Before we discuss about 〈v〉 , we will explain about
acceleration previously. Based on Ehrenfest theorem,
acceleration is written in the non-relativistic form

as
d2〈r〉
dt2

=
〈− dV (r)

dr 〉
m0

= 〈F (r)〉
m0

= −GM〈r2〉 [10], with

〈r2〉 = 〈∆r2〉. So −GM〈r2〉 is not equal to −GM〈r2〉 as

the classical form. It means that 〈F (r)〉 = F (〈r〉) +
(r − 〈r〉)F ′(〈r〉) + ..... This equation to be 〈F (r)〉 ∼=
F (〈r〉) if (r − 〈r〉) ∼= 0. In this condition, the change
of potential is slowly with respect to the distance
[8, 9, 10] like in the local laboratory where equivalence
principle prevails. We know that F ′(〈r〉) and the higher
order do not give physical meaning in the context of
Newton’s second law because there is no term a′(〈r〉)
moreover in higher order, although in the form of
arbitrary force equation itself such as gravitational
force gives the meaning. The existence of a′(〈r〉) does
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not obey equivalent principle because it is not uniform
acceleration. So we must view that F ′(〈r〉) = 0. Then
because of relativistic case, we take (r − 〈r〉) ∼= λC ,
with λC is the Compton wavelength as the smallest
possible uncertainty [11, 12]. Automatically it yields
〈r2〉 6= 〈r〉2. So 〈F (r)〉 6= F (〈r〉). In this condition
〈a(r)〉 = a1 and a(〈r〉) = a2, where a1 and a2 are the
different constant such a way that acceleration does
not depend on radial distance in the local laboratory.

Then, integration of
d2〈r〉
dt2

gives 〈v〉 = 〈v0〉 + a1t and

the square form yields 〈v〉2 = 〈v0〉2+2a1(〈v0〉+ 1
2a1t

2).
Suppose that 〈v0〉 = 0, such a way that we get the
relation between 〈v〉 and 〈r〉 as follow:

〈v〉2 = 2
GM

〈r2〉
〈r〉 ≈ 2

GM

〈r〉2
〈r〉 =

2GM

r
(2)

2. Heisenberg Uncertainty in the
Gravitational Field
The energy is possed by particle in the gravitational
field is consist of relativistic kinetic and potential
energy, but we will only take relativistic kinetic energy
part instead of potential one in order to get uncertainty
which is just contributed by kinetic energy. In special
relativity, kinetic energy is K = E − m0c

4. Then,
here we use dispersion theory to view the uncertainty
[8, 10, 13], so ∆E = p

E c
2∆p = 1

vph
c2∆p = vg∆p.

This uncertainty relation can be described naturally
by de Broglie wave packet [8, 10]. It means that
superposition principle can be used here but for local
observation only where does Equivalence Principle
prevails. Based on the K = E − m0c

2, we get that
∆E = ∆K.

If the stationary observer in such event P measures
the test particle which is freely falling near the
blackhole, so according to this observer, energy
and momentum uncertainty of the test particle are
∆E = γ3m0vg∆v and ∆p = γ3m0∆v, with ∆v =√
〈v2〉 − 〈v〉2 following standard deviation rule. Then

here we define ∆Kv = vg∆pv. As the consequence
of Eq. (2), we just replace group velocity inside the
Lorentz factor as follow:

∆E =
∆Kv

(1− 2GM/〈r〉
c2 )3/2

(3)

∆p =
∆pv

(1− 2GM/〈r〉
c2 )3/2

(4)

We can write ∆Kv = m0vg∆v ≈ m0|−GM〈r〉2| ∆t as

the consequence of Eq. (2). It gives understanding as

if energy and momentum respectively is the function
of position and time such that contradiction with
Heisenberg uncertainty itself. We can understand this
by the following explanation.

Let’s notice again Eq.(2). If we take uncertainty
of this equation we get that vg∆v ≈ | −GM〈r〉2|∆r with√
〈v2〉 − 〈v〉2 =

√
〈∆v2〉 and

√
〈r2〉 − 〈r〉2 =

√
〈∆r2〉.

The maximum fixed value of 〈v2〉 = c, but 〈v〉 can
change from zero at infinity distance up to c at the
horizon. While, the maximum fixed value of 〈r2〉 =∞
up to Schwareszchild radius rS . When the particle rests
at infinity distance of blackhole, we can set ∆v ≈ 0
and ∆r ≈ ∞ correspond to the condition in which
〈v〉 ≈ 0 and 〈r〉 ≈ ∞. This condition is suitable with
vg∆v ≈ |−GM〈r〉2 |∆r. Then if the particle closes to the

horizon, we also take ∆v ≈ 0 and ∆v ≈ ∞ correspond
to the condition that 〈v〉 ≈ c and 〈r〉 ≈ rS . So it
gives that vg∆v � |−GM〈r〉2 |∆r. So it gives that vg∆v ≈
|−GM〈r〉2 |∆r. It will not be consistent with equivalence

principle in the classical correspondence. The problem
is how to keep the uncertainty form of Eq. (2) is still
consistent for ∆v ≈ 0 and ∆r ≈ ∞. It is impossible.
The way out of this problem is viewing Lorentz
Fitz-Gerald contraction effect to position uncertainty
∆r. This effect will be explained evidently in the
next section after we formulate position uncertainty
in Eq.(5). Because of Lorentz Fitz-Gerald contraction
to ∆r, it shows that ∆r ≈ 0 not ∆r ≈ ∞ at a
point close to horizon. In this condition, of course
that 〈a(r)〉 ≈ a(〈r〉). Hence the uncertainty form of
Eq.(2) is valid in all condition. But we must take
the consequence that Heisenberg uncertainty seems
to be violated because of ∆r ≈ 0 for ∆v ≈ 0. It
is no problem because it is just position uncertainty
which is according to the observation. The position
uncertainty which will be infinite is the proper position
uncertainty i.e. ∆rp (see Eq.(5)), such that does not
commute with velocity and not violates Heisenberg
uncertainty principle. This point will has been clear
later, in the last formulation of relativistic Heisenberg
uncertainty.Then from relation vg∆v ≈ |−GM〈r〉〉2 |∆r, we

can cancel vg so that ∆v ≈ |−GM〈r〉〉2 |∆t. When ∆v ≈ c

and ∆r ≈ λC correspond to the condition that 〈v〉 ≈ 0
and 〈r〉 ≈ ∞, so ∆t ≈ 0 following Lorentz-Fitzgerald
contraction of ∆r.

Further from the gµv ≈ ηµv, locally we can define
Cartesian coordinate system as follow [2] ds2 ≈
c2dt2 − dr2 − r2dθ2 − r2sin2θdϕ2, but we will write
in the sense of uncertainty i.e. ∆s2 = c2∆t2 −∆r2 −
r2∆θ2 − r2sin2θ∆ϕ2. It is good enough in describing
local flat space time with ∆θ = ∆ϕ = 0, because
particle just radially moves. The ∆r can be stated as
∆r = vg∆t. It is the contracted width of wave packet
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during the time ∆t. So, we obtain uncertainty relation
between position r and time t which can form the
relation ∆E∆t = ∆p∆r. So there is analogy between
energy-time and momentum-position uncertainty.

In quantum field theory, r and t are treated as a
parameter, hence both of them are not properties of
particle [14, 15]. The ∆t and ∆r respectively show
how long and how far the state changes correspond
to the arbitrary observable Q [8, 16]. These process
are describe as ∆t = 1

dQ

dt

∆Q and ∆r =
vg

dQ

dt

∆Q.

Nevertheless, in the context of Heisenberg uncertainty,
we can view both ∆r and ∆t as if an uncertainty such
a way that can be connected with ∆p and ∆E.

In Special Relativities viewpoint, we know that
position-time uncertainty (∆r −∆t) according to the
stationary observer is expressed as ∆r = γ−1∆tp.
Then, equivalence principle shows that

∆r = ∆rp

√
1− 2GM/〈r〉

c2
(5)

∆t = ∆tp

√
1− 2GM/〈r〉

c2
(6)

with ∆rp are the proper length but ∆tp is not
the proper time duration. I state like that because
the truly definition of proper time is ∆τ = ∆xp/c,
not ∆tp = ∆xp/vg. Then because of treating ∆r
as the length, it is oriented to Lorentz Fitz-Gerald
contraction and by cancelling vg, the time is shorter
also. So ∆r as the width of wave packet of freely falling
particle when it is moving with vg close to the speed
of light and ∆t as the duration for the moving wave
packet to spend it’s width (not time dilation), which
are measured by the stationary observer. If we want
to view that the time runs slower, we have to use
the Lagrangian in expressing the energy, consistent

with the rule that
∫
Ldt = −

√
1− v2

c2m0c
2τ/
√

1− v2

c2 .

Hence ∆L = γm0vg∆v = ∆Kv√
1− 2GM/〈r〉

c2

and ∆t =

∆tp =
∆tp√

1− 2GM/〈r〉
c2

. It means that according to the

stationary observer, the time is elapsed by the freely
falling test particle near the blackhole runs slower. As
the consequence, the spreading of the wave packet is
slower also.

So we can state that Heisenberg uncertainty relation
of the freely falling test particle according to the
stationary observers in every local laboratory along
the radial distance obey the relation

∆p∆r =
~/2

1− 2GM/〈r〉
c2

(7)

∆E∆t =
~/2

1− 2GM/〈r〉
c2

(8)

Then, from the Lagrangian form and time dilation,

we get ∆L∆t = ~/2
1− 2GM/〈r〉

c2

. Equation (7) and (8)

are analogue each other but not for Lagrangian-time
dilation form. So we will not use this form later.
If we notice, the right hand side of Eq.(7) and (8)
to be the minimum limit of Heisenberg uncertainty
in relativistic domain with ~/2 = ∆pv∆rp for
Eq. (7) and ~/2 = ∆Kv∆tp for Eq. (8). We
can give the terminology that the left hand side
of Eq.(7) until Eq.(8) as the coordinate Heisenberg
uncertainty while the right hand side, i.e. ∆pv∆rp
and ∆Kv∆tp whose value are ~/2 are the proper
Heisenberg uncertainty. It is like the concept of proper
length/time and coordinate length/time. It means
that globally, Heisenberg uncertainty minimum limit
does not invariant. We can state that ∆Kv, ∆pv,
∆tp, and ∆rp are the forms which correspond to
the non-relativistic uncertainty. Those forms can be
understood as uncertainty of particle if the particle is
far away from gravitational influence such a way that
∆p∆r ∼ ∆pv∆rp and ∆E∆t ∼ ∆Kv∆tp. So, the weak
gravitational field will be not significant to increase the
Lorentz factor in the uncertainty relation of particle.
Equation (7) and (8) are consistent in the each tangen
space where special theory of relativity prevails, i.e.
the tiny region of space along the radial vacuum space
around the blackhole.

Notice that ∆Kv according to freely falling observer
S’ is not equal to ∆Kv according to stationary observer
S which correspond to the relation ∆E = γ3∆Kv,
because in this relation, ∆Kv contains vg whose value
close to c, while vg which is convenient to freely
falling observer is 0, so it seems contradictive that
(∆Kv)S > (∆Kv)S′ . As the consequence (∆tp)S <
(∆tp)S′ (because of relation ~/2 = ∆Kv∆tp). It
shows the difference duration of ∆tp between which
is observed by S and S’. Nevertheless it is no problem,
because (∆Kv∆tp)S = (∆Kv∆tp)S′ = ~/2. Hence
we can still take ∆Kv∆tp according to stationary S
observer in to account.

3. Local Observation between Nearby
Points
A local laboratory where is equivalence principle
prevails, requires that gravitational field must be
uniform. Suppose that stationary observer has a
local laboratory that it’s height is H, connecting
the upper point A and the lower point B. Freely
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falling particle moves from A to B as it is observed
by two stationary observers. The form of relativistic
momentum uncertainty at A is (∆p)A and at B
is (∆p)B . Then the relativistic form of energy
uncertainty at A is (∆E)A and at B is (∆E)B .
According to two local stationary observers at A and
B, they relatively see relativistic energy-momentum
uncertainty increases when the particle is freely falling
from A to B. The observers them self who stay
at two points would feel the difference of their
energy-momentum uncertainty if we view they as
a particle which are identic with the freely falling
particle. While for the non-relativistic momentum
uncertainty (∆pv)A > (∆pv)B because vg at B is
greater than that at A, while the 〈v2〉 = c. So we
can insert multiplication factor ξ for ∆pv between
A and B to be (∆pv)A = ξ (∆pv)B , and so
(∆pγ−3)A = ξ (∆pγ−3)B . Then for non-relativistic
energy uncertainty at A is (∆Kv = vg∆pv)A and at B
is (∆Kv = vg∆pv)B . We can see that when vg at A
is smaller, so the ∆pv is greater. It is conversely at B.
Hence we get that the ξ itself is vgB/vgA. Consequently
it yields (∆Kv)A = (∆Kv)B , and so (∆Eγ−3)A = ξ
(∆Eγ−3)B . Then, by using binomial expansion for the
Lorentz factor, we obtain

∆pA = ξ∆pB(1− 3gH

c2
+ ...) (9)

∆EA = ξ∆EB(1− 3gH

c2
+ ...) (10)

Further, because of (∆pv)A = ξ(∆pv)B , it gives
the consequence that (∆rp)A will be not equal to
(∆rp)B and because of (∆Kv)A =(∆Kv)B , the
(∆tp)A will be equal to (∆tp)B . Hence (∆rp)A =
ξ−1(∆rp)B , so (γ∆r)A = ξ−1 (γ∆t)B . The ∆r − ∆t
is the space-time uncertainty of freely falling particle
according to observer at two points and ∆rp −∆tp is
the non-relativistic form of spacetime uncertainty . By
using the same procedure i.e. binomial expansion, we
get

∆rA = ξ−1∆rB(1 +
gH

c2
+ ...) (11)

∆tA = ∆tB(1 +
gH

c2
+ ...) (12)

It shows that in the local laboratory, the Stationary
observer will relatively see the difference of width
and moving time of wave packet between upper point
A and lower point B. Wave packet at B is shorter

than that at A like in Lorentz–Fitzgerald contraction
according to stationary observer and also for it’s
elapsing time. Stationary observers also feel that their
radial length contracts.

Lorentz contraction happen globally along radial
distance correspond to Eq.(5). Every wave packet
shows local observation region where gravitation is
uniform. If we zoom in this region, the width of wave
packet changes with respect to the change of radial
velocity correspond to Eq.(11) because of uniform
gravitational field g. It means that locally, the state
of particle is changed by g. This condition is shown in
Figure 1.

The change of the width of wave packet is not
caused by localizing process, but that is the Lorentz
contraction effect. In this case, we do not localize
particle.

Figure 1: Global and local observation of the
wave packet with length ∆r according to
stationary observers along the radial direction

Then, in every local laboratory, the difference of
Heisenberg uncertainty between two nearby point A
and B are

∆pA∆rA = ∆pB∆rB(1−3GgH

c2
+...)(1+

gH

c2
+...) (13)

with uncertainty terms follow Eq.(7) and (8). It means
that even locally, Heisenberg uncertainty minimum
limit does not invariant also (Compare this with Eq.(7)
and (8) which show globally not invariant). Equation
(13) tells that in the local zone Stationary observer
B see relatively that Heisenberg uncertainty of freely
falling particle at him is larger than that at observer A.
It is because (∆pv∆rp)B is viewed as (∆p∆r)B at the
lower point, while (∆pv∆rp)A is viewed as (∆p∆r)A
at the upper one whose value is smaller than that at
the lower. At the same moment, Freely falling particle
will relatively see the Heisenberg uncertainty of the
lower observer increases than that of the upper if the
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observers are viewed as identical particles like freely
falling one. Observer B can feel that his uncertainty is
larger than that of A, because they are in the inersial
frame with the presence of gravitational effect, while
freely falling particle cannot feel that it’s uncertainty
increases, because it is in the inersial frame in the
absence of gravitational effect.

According to paper [5], relation ~x/~0 =
(1 + βh∆U/c2) shows that the Planck constant
varies depend on the potential difference which
the contribution is determined by parameter
βh. If the Planck constant satisfies LPI (Local
Position Invariance), then ~x would be constant.
However, if ~x varies with position, then there
is a concept of the change of invariance about
Planck constant. This result theoretically can be
understood based on the setting that (∆p)A =
ξ(∆p)B ,(∆E)A =(∆E)B ,(∆r)A = ξ−1(∆r)B ,
(∆t)A =(∆t)B . So they can be formed to the several
equations as follow:

∆pυA = ξ∆pυB(1 +
3gH

c2
+ ...)

∆KυA = ∆KυB(1 +
3gH

c2
+ ...)

∆rpA = ξ−1∆rpB(1− gH

c2
+ ...)

∆tpA = ∆tpB(1− gH

c2
+ ...) (14)

This setting is equivalent with one we have done from
Eq.(9) until Eq.(12). If we use viewpoint of this setting
for Local Observation between two nearby Point, so
it means that we have taken ~/2 for ∆pv∆rp and
∆Kv∆tp. Consequently, we can view that ∆pv∆rp
and ∆Kv∆tp are not as ~/2 again. Both ∆pv∆rp and
∆Kv∆tp can decrease even until zero at the horizon.
Hence uncertainty relation between two stationary
observers will become

(∆pv∆rp)A = (∆pv∆rp)B(1+
3gH

c2
+...)(1− gH

c2
+...)

(15)

with (∆pv∆rp)A = ~A = γ−2∆pA∆rA and
(∆pv∆rp)B = ~B = γ−2∆pB∆rB . Equation above
can be used to give the reason from theoretical
viewpoint in explaining the LPI violation of the Planck
constant if we set that to the non- relativistic limit,
because LPI violation data is analyzed for the weak
gravitational field, i.e. the gravitation of earth. The
analysis of LPI gives ~A

~B
= (1 + βh∆U/c2), while

theoretically I get ~A

~B
= (1 + 2∆U/c2) from Eq. (11).

Nevertheless, we must understand that although the
set of Eq.(14) is equivalent with Eq.(9) until (12), but
we cannot use this set. The reason is that when we use
the set of Eq.(14), so the value of Eq (7) and (8) will
be ~/2 in the left hand side, while the ~/2 in the right
one will decrease up to zero at the horizon. It means
that the minimum limit of Heisenberg uncertainty can
than ~/2. Whereas, commonly in quantum mechanics,
the minimum limit of Heisenberg uncertainty must
be ~/2 as the proper value. So I decide to use
the previous manner in the sense that Heisenberg
uncertainty proper limit is ~/2, and it will be larger
in the strong gravitational field. In this condition,
the states of the particle is constrained by larger
phase space p − r than that at a point which far
away from the blackhole. At the horizon, Heisenberg
uncertainty will be infinite. For the weak gravitational
field, we get ∆pA∆rA/∆pB∆rB = (1− 2∆U/c2). It is
consistent with quantum mechanic minimum limit ~/2
but contradict with ~A/~B = (1 + 2∆U/c2). It can be
the subject for the next study.

Heisenberg uncertainty in this study is actually
more appropriate for the real particles which
fall to the blackhole, while particles in Hawking
radiation are virtual. However we can use these
equations also practically to describe vacuum
fluctuation, because principally, that phenomenon
connected with uncertainty. The relation between
ratio M/r and Heisenberg uncertainty in this
study can unify universal constants G,~, and c.
The discussion which implicates the Planck scale
and the concept of quantum gravity [17, 18, 19]
was explained by generalized uncertainty relation
∆p∆x ≥ ~/2

[
1 + β(∆p)2 + ...

]
. This relation also

shows the unification of G,~, and c. The discussion
about relation between that form and the result
in this paper is beyond of this paper. Principally,
both of those forms show that the minimum limit of
Heisenberg uncertainty will increase even blowing up
in a such situation.

Conclusion
Heisenberg uncertainty relation in the strong

gravitational field is ∆p∆r ≥ ~/2
(1− 2GM/〈r〉

c2
)

and or

∆E∆t ≥ ~/2
(1− 2GM/〈r〉

c2
)
. While the forms revert to

∆p∆x ∼ ~/2 and or ∆E∆t ∼ ~/2 if gravitational field
is weak where is the non-Relativistic Quantum
Mechanic prevails. For the local observation
between two nearby points, the uncertainty is
∆pA∆rA = ∆pB∆rB(1 − 2gH

c2 + ...). Unification
between general relativity and quantum domain
based on my understanding gives the Heisenberg
uncertainty relation as the function of gravitational
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field with expression of three fundamental constants.
This uncertainty relation is the result from combining
equivalence principle and uncertainty principle.
Through equivalence principle, gravitation can affect
Heisenberg uncertainty relation.
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