ARTIKEL RISET

Analisa *Magnetoresistance* Berbasis Lapisan Tipis *Giant Magentoresistance* (GMR) pada *Nanopartikel Cobalt* (CoFe₂O₄) dilapisi *Polyethelyn Glicol*

Novi Susanti^{1*} dan Edi Suharyadi²

Abstrak

Telah dilakukan pengukuran magnetoresistance pada lapisan tipis spin valve GMR yang memiliki struktur CoFeB/Cu/CoFe/MnIr dengan memvariasikan ketebalan lapisan barrier Cu (2,2 dan 2,8 nm) dan free layer CoFeB (7 dan 10 nm) menggunakan System Four Point Probe Method (SFPPM) pada medan eksternal 0-600 gauss. Dihasilkan perubahan range resistansi $(69, 29 - 71, 74)\Omega$ untuk Cu 2,2 nm dan $(38, 5 - 40, 47)\Omega$ untuk ketebalan Cu 2,8 nm. Pada variasi ketebalan CoFeB dihasilkan perubahan range resistansi untuk ketebalan 7 nm dan 10 nm masing-masing adalah $(38, 74 - 41, 11)\Omega$ dan $(69, 29 - 71, 74)\Omega$. Selanjutnya lapisan tipis digunakan sebagai sensor magnetik untuk mendeteksi kehadiran nanopartikel CoFe₂O₄, CoFe₂O₄ yang dimodifikasi PEG dan CoFe₂O₄ termodifikasi PEG yang telah mengikat biomolekul formalin. Terjadi pergeseran nilai resistansi ketika lapisan tipis dilapisi nanopartikel magnetik tersebut. Hal ini menunjukkan bahwa lapisan tipis GMR mampu mendeteksi prilaku spin pada nanopartikel magnetik CoFe₂O₄.

kata kunci: giant magnetoresistance; lapisan tipis; nanopartikel CoFe₂O₄, polyethelyn glicol

Abstract

Magnetoresistance measurements were carried out in a thin film of the spin valve GMR structure CoFeB/Cu/CoFe/MnIr by varying the thickness of the barrier layer of Cu (2,2 and 2,8 nm) and CoFeB free layer (7 and 10 nm) using System Four Point probe Method (SFPPM) in the external field 0-600 Gauss. It was found that the changes in the resistance range were $(69.29 - 71.74)\Omega$ for Cu 2,2 nm and $(38.5 - 40.47)\Omega$ for Cu 2,8 nm. In variations of CoFeB thickness, the changes in the resistance range for the thickness of 7 nm and 10 nm were $(38.74 - 41.11)\Omega$ and $(69.29 - 71.74)\Omega$ respectively. Furthermore, a thin layer is used as a magnetic sensor to detect the presence of CoFe₂O₄ nanoparticles, PEG coated CoFe₂O₄ and CoFe₂O₄ modified by PEG that was bonded with formalin biomolecules. A shift in resistance value occurs when a thin layer of the coated magnetic nanoparticles. This suggests that the thin layer of the GMR is able to detect the behavior of magnetic spins of CoFe₂O₄ magnetic nanoparticles.

keywords: giant magnetoresistance; thin film; CoFe₂O₄ nanoparticle; polyethelyn glicol

1. Pendahuluan

Perkembangan sensor magnetik berbasis teknologi Giant Magnetoresistance (GMR) pada saat ini menarik minat banyak peneliti. Hal ini dikarenakan material GMR memiliki sifat listrik dan magnetik yang baik. Disamping itu, keuntungan lain dari penggunaan teknologi GMR ini adalah memiliki sensitivitas yang tinggi dan respon yang cepat pada medan magnet rendah [1].

Prinsip dasar *Giant magnetoresistance* adalah perubahan resistansi pada lapisan multilayer ketika diberikan medan magnet luar dan merupakan efek mekanika kuantum yang bergantung pada fenomena *scattering spin*. Ketika medan eksternal diberikan pada lapisan multilayer Fe/Cr, arah magnetisasi pada lapisan Fe akan berotasi ke arah paralel seiring dengan meningkatnya medan eksternal hingga akhirnya moment magnetik total mengalami saturasi. Selama rotasi magnetisasi dari antiparalel menuju paralel

^{*}Korespondensi: ovieelkarim@yahoo.co.id

¹Dinas Sosial Kabupaten Bengkalis, Jalan Antara-Bengkalis, Riau, Indonesia

Informasi lengkap tentang penulis dapat dilihat pada akhir artikel

terjadi perubahan resistansi yang besar. Asal dari perubahan resistansi ini adalah hamburan elektron antara wilayah magnetisasi paralel dan antiparalel yang disebut dengan *spin dependent transport* [2].

Struktur lapisan tipis GMR berpengaruh terhadap nilai resistansi, sehingga banyak penelitian dilakukan untuk menemukan struktur metal-magnetik yang bisa menghasilkan perubahan resistansi yang besar. Ada tiga tipe lapisan GMR, sandwich, multilayer dan spin valve [3]. Selain dari jenis struktur penyusunnya, sifat GMR pada lapisan tipis juga dipengaruhi oleh ketebalan lapisan magnetik dan non magnetik [4]. Dalam penelitian ini digunakan lapisan tipis GMR spin valve Co90Fe19B4/Cu/Co90Fe19/Mn80Ir20 (free layer /barier/pinned layer/pinning layer/) yang lapisan magnetik free layer dan nonmagnetik barrier divariasikan untuk menguji kualitas dari nanopartikel magnetik.

Nanopartikel magnetik telah menjadi objek penelitan yang menarik karena sifatnya yang aplikatif di berbagai bidang seperti bioteknologi, penyimpan data dan biomedis. Di antara jenis material magnetik, $CoFe_2O_4$ banyak diteliti karena memiliki stabilitas kimia dan kekerasan mekanik yang baik. Selain itu, dengan mengontrol ukuran material, $CoFe_2O_4$ akan memiliki sifat superparamagnetik yang memiliki magnetisasi tinggi ketika diberi medan eksternal, namun memiliki magnetisasi rata-rata nol tanpa medan eksternal [5]. Sehingga, nanopartikel $CoFe_2O_4$ mudah dikondisikan dalam aplikasinya. Salah satu cara memodifikasi material $CoFe_2O_4$ yaitu *pengcoatingan* dengan polimer, seperti polyethilen glycol (PEG). Penggunaan PEG bertujuan untuk menambah dispersibilitas, biokompatibel dan stabilitas kimia $CoFe_2O_4$ [6]. Dalam penelitian ini, akan diteliti bagaimana perubahan resistansi pada lapisan tipis GMR ketika dilapisi nanopartikel $CoFe_2O_4$, nanopartikel $CoFe_2O_4$ yang termodifikasi dengan PEG dan nanopartikel $CoFe_2O_4$ termodifikasi PEG yang telah mengikat biomolekul formalin. Dengan sifat PEG yang mampu mengikat biomolekul penelitian ini berpotensi dikembangkan dalam teknologi biosensor magnetik.

2. Metode Penelitian

Lapisan tipis $Co_{90}Fe_{19}B4/Cu/Co_{90}Fe_{19}/Mn_{80}Ir_{20}$ spin valve ditumbuhkan dengan metode Dc-Magnetron Sputteri (DMS) pada daya 60-120 Watt. Susunan dan arah magnetisasi lapisan tipis dapat dilihat pada gambar 1. Lapisan tipis yang digunakan divariasikan ketebalan free layer CoFeB (2,2 nm dan 2,8 nm) serta barrier Cu (7 nm dan 10 nm).

Gambar 1: Lapisan tipis GMR (a) susunan skematik (b) arah magnetisasi.

Nanopartikel magnetik $CoFe_2O_4$ disintesis dengan menggunakan metode kopresipitasi. Senyawa hidrat $CoCl_2.6H_2O$ dan $FeCl_3.6H_2O$ dengan perbandingan fraksi mol 1:2 dilarutkan dengan HCl 3,37ml. Larutan kemudian dimasukkan kedalam larutan NaOH 5 M dengan suhu pengadukan 80°C dan lama pengadukan 120 menit. Pengeringan dilakukan dengan menggunakan furnace pada suhu 80° C. $CoFe_2O_4$ yang telah disintesis kemudian dimodifikasi menggunakan polyethylen glicol 4000 dengan perbandingan 2:1. $CoFe_2O_4$ termodifikasi PEG selanjutnya digunankan untuk mengikat biomolekul formalin.

Lapisan $Co_{90}Fe_{19}B_4/Cu/Co_{90}Fe_{19}/Mn_{80}Ir_{20}$ dilapisi dengan nanopartikel $CoFe_2O_4$, $CoFe_2O_4$ yang telah termodifikasi PEG-4000 dan $CoFe_2O_4$ termodifikasi PEG yang telah mengikat biomolekul formalin kemudian diukur resistansinya ketika diberikan medan eksternal dengan menggunakan metode 4-point probe sustem.

Karakterisasi struktur kristal, ukuran partikel, morfologi, gugus fungsi dan sifat kemagnetan nanopartikel $CoFe_2O_4$ menggunakan -*RayDiffraction* (XRD), *Transmission Electron Microscope* (TEM), *Fourier transform infrared* (FTIR) dan Vibrating Sample Magnetometer (VSM).

3. Hasil dan Pembahasan

3.1 Pengukuran GMR untuk Ketebalan Lapisan Barier Cu yang Berbeda

Lapisan barrier merupakan lapisan non magnetik berfungsi sebagai jembatan yang memungkinkan terjadinya efek terobosan dengan syarat ketebalanya harus melebihi jalan bebas rerata elektron (*mean* free path) yaitu jarak minimum yang memungkinkan elektron untuk mengubah arah spinnya[3]. Gambar 2 merupakan histeresis loop untuk lapisan tipis dengan variasi barrier Cu 2,2 nm (a) dan 2,8 nm (b). Kedua

Gambar 2: Kurva histeresis lapisan tipis (a) tebal barrier Cu 2.2 nm dan (b) tebal barrier Cu 2.8 nm

kurva histeresis menunjukan bahwa sampel yang dibuat termasuk jenis material *soft magnetic* yang memiliki fenomena pergeseran *domain-wall* sangat mudah dipengaruhi medan eksternal.

Ditinjau dari medan koersivitasnya (Hc) maka pada ketebalan *barrier* Cu 2.2 nm memiliki Hc yang relatif lebih kecil (5 Oe) dibandingkan pada ketebalan barrier Cu 2.8 nm (15 Oe). Hal ini menunjukan untuk mengubah magnetisasi pada tebal barrier Cu 2,2 nm adalah relatif lebih mudah dibandingkan mengubah magnetisasi pada tebal *barrier* Cu 2.8 nm.

Kurva histerisis pada gambar 2 mengalami pergeseran ke arah kiri dari kurva histerisis normal. Besarnva medan vang digunakan untuk menggeser kurva disebut medan exchange bias (Heb). Exchange bias terjadi pada interface ferromagnetik dan antiferomagnetik. Fenomena ini menunjukan adanya kekasaran struktur interface pada lapisan ferromagnetik danantiferomagnetik sehingga menyebabkan moment-moment magnetik pada lapisan ferromagnetik akan tertahan.

Besarnya Heb pada ketebalan barrier Cu 2.8 nm memiliki nilai yang lebih besar yaitu 100 Oe dibandingkan pada ketebalan barrier Cu 2,2 nm yang bernilai 10 Oe. Perbedaan nilai Heb ini dikarenakan tingkat kekasaran interface pada lapisan tipis dengan ketebalan Cu 2,8 nm lebih tinggi dibandingkan lapisan tipis dengan Cu 2,2 nm. Pernyataan ini sesuai dengan bentuk kurva histeresis pada gambar 2(b) yang memperlihatkan terbentuknya kurva bertingkat dua pada lapisan tipis dengan Cu 2,8 nm. Hal ini menunjukan bahwa medan terpasang digunakan terlebih dahulu untuk memposisikan pada kondisi benar-benar antipararel [7], sehingga berpengaruh terhadap perubahan resistansi yang terjadi. Munculnya fenomena GMR pada lapisan tipis merupakan efek dari mekanika kuantum yang berhubungan dengan kenyataan bahwa spin elektron memiliki dua keadaan yang berbeda, spin up dan spin down. Ketika spin-spin ini melintasi lapisan tipis

Gambar 3: Rasio sifat GMR pada variasi tebal barrier Cu (a) 2,2 nm dan (b) 2,8 nm.

yang dimagnetisasi, *spin up* dan *spin down* mengalami hambatan yang berbeda. Sifat ini menunjukkan adanya hamburan bergantung spin. Rasio GMR diperoleh dengan mempertimbangkan rasio dari perubahan resistansi pada kondisi puncak sampai pada kondisi saturasi dibandingkan kondisi tanpa medan.

Gambar 3 menunjukan bahwa pada sampel dengan ketebalan lapisan barrier Cu 2,2 nm memiliki rasio GMR sebesar 6% sedangkan pada ketebalan barrier Cu 2,8 nm hanya sebesar 1%. Hal ini menunjukan bahwa sifat GMR lebih mudah muncul pada lapisan dengan variasi tebal Cu 2,2 nm dibandingkan dengan tebal barrier Cu 2,8 nm. Bertambahnya ketebalan lapisan barrier meningkatkan kemungkinan terjadinya hamburan ketika elektron konduksi melewati lapisan non magnetik yang mengakibatkan berkurangnya aliran elektron diantara lapisan ferromagnetik. Selain itu, dengan lapisan barrier yang tebal akan terjadi hamburan pembalikan spin, sehingga spin yang berada pada lapisan barrier dapat menyesuaikan diri dengan arah magnetisasi pada lapisan feromagnetik. Kedua hal di atas menyebabkan pelemahan pada efek GMR.

3.2 Pengukuran GMR untuk Ketebalan Lapisan free layer CoFeB yang Berbeda

Besarnya rasio sifat GMR yang teramati pada gambar 4 adalah 4% untuk ketebalan free layer CoFeB 7nm dan 6% untuk ketebalan free layer 10 nm. Persen rasio bertambah besar dengan meningkatnya ketebalan dari lapisan free layer CoFeB. Besarnya persen (%) rasio ini menentukan sensitivitas lapisan tipis terhadap medan magnet eksternal yang diberikan. Penurunan MR ratio pada ketebalan lapisan free layer CoFeb yang lebih tipis (7 nm) dikarenakan hamburan yang terjadi pada *outer boundary* (*caping layer* dan *interface*). Hamburan ini terjadi karena lapisan ferromagnetik lebih tipis dari dua *mean free path* elektron yang berhubungan dengan *spin up* dan *spin down*.

Gambar 4: Rasio Sifat GMR pada variasi ketebalan free layer CoFeB (a) 7 nm dan (b) 10 nm

Gambar 5: Pola spektrum XRD nanopartikel $CoFe_2O_4$ dan $CoFe_2O_4$ yang telah dilapisi PEG

3.3 Karakterisasi Struktur Kristal Nanopartikel

Pola karakterisasi struktur kristal dapat dilihat pada gambar 5. Pola XRD menunjukkan bahwa sampel membentuk fase $CoFe_2O_4$ yang terlihat dari puncak-puncak bidang difraksi (220), (311), (400), (511) dan (440). Selain itu terdapat fasa lain α – Fe2O3 yang merupakan fasa pengotor.

Pola spektum XRD untukCoFe2O4 yang telah termodifikasi PEG menunjukan adanya puncak-puncak baru geothite $(\alpha - FeO(OH))$ dan lepidocrocite $(\gamma - FeO(OH))$. Fasa tersebut menandakan bahwa telahterjadi pelapisan nanopartikel oleh PEG. Hal ini dikarenakan atom-atom Fe3+ pada permukaan $CoFe_2O_4$ bereaksi dengan gugus hidroksil pada PEG.

3.4 Karakterisasi Ukuran Butir dan Morfologi Nanopartikel

Pada gambar 6(a) terlihat bahwa nanopartikel $CoFe_2O_4$ memiliki bentuk ukuran bulat meski belum bulat sempurna. Hasil citra morfologi juga menunjukkan bahwa sampel memiliki kecenderungan teraglomerasi. Berdasarkan perhitungan histogram distribusi ukuran sampel menggunakan software

Gambar 6: (a) Citra morfologi dan (b) Pola difraksi nanopartikel $CoFe_2O_4$.

Gambar 7: (a) Citra morfologi dan (b) pola difraksi nanopartikel CoFe2O4 yang telah dimodifikasi dengan PEG-4000

image-J didapatkan ukuran butir partikel $CoFe_2O_4$ $\pm 9nm.$

Pada pengujian TEM juga dilengkapi oleh gambar cincin difraksi untuk nanopartikel $CoFe_2O_4$ dan $CoFe_2O_4$ termodifikasi PEG pada gambar 6 (b) dan 7(b) yaitu bidang-bidang kristal (220), (311), (400), (511) dan (440) yang merupakan ciri khas bidang kristal $CoFe_2O_4$. Untuk nanopartikel $CoFe_2O_4$ termodifikasi PEG citra morfologinya dapat dilihat pada gambar 7(a). Terdapat perbedaan morfologi dengan nanopartikel $CoFe_2O_4$ sebelum dimodifikasi dengan PEG. Aglomerasi nanopartikel menjadi berkurang dan ukuran butir nanopartikel cenderung merata. Ukuran butir nanopartikel $CoFe_2O_4$ menjadi lebih besar setelah difungsionalisasi dengan PEG yaitu $\pm 42nm$. Perbedaan ukuran butir ini terjadi karena adanya proses self assembly dimana didalam satu butir nanopartikel yang termodifikasi PEG terdapat lebih dari satu butir nanopartikel $CoFe_2O_4$.

3.5 Karakterisasi Gugus Fungsi Nanopartikel

Karakterisasi FTIR dari sampel yang telah dimodifikasi diperoleh spektrum seperti pada Gambar 8. Terdapat perbedaan spektrum serapan antara $CoFe_2O_4$ yang telah dimodifikasi dengan PEG-4000

Gambar 8: Spektrum FTIR untuk nanopartikel $CoFe_2O_4$, PEG-4000, $CoFe_2O_4$ termodifikasi PEG, dan CoFe2O4 termodifikasi PEG yang telah mengikat formalin

, $CoFe_2O_4$ yang belum dimodifikasi PEG-4000 , PEG-4000 murni dan $CoFe_2O_4$ termodifikasi PEG yang telah mengikat formalin.

Berdasarkan tabel 1 dapat diketahui bahwa $CoFe_2O_4$ berhasil berikatan dengan PEG dengan hadirnya puncak serapan baru pada nanopartikel $CoFe_2O_4$ yang telah dimodifikasi dengan PEG. Puncak serapan baru tersebut terdapat pada bilangan gelombang 354,90 cm^{-1} yang merupakan puncak dari vibrasi ion logam dan oksigen. Pada sampel $CoFe_2O_4$ termodifikasi PEG yang telah mengikat formalin puncak serapan baru terdapat pada bilangan gelombang 1589,34 cm^{-1} (vibrasi gugus C-O) yang menunjukkan terbentknya ikatan baru antara polimer PEG dan biomolekul formalin.

3.6 Karakterisasi Sifat Kemagnetan Nanopartikel

Gambar 9 merupakan kurva histeresis dari $CoFe_2O_4$ dan $CoFe_2O_4$ dimodifikasi PEG. Medan saturasi Ms remanance Mr mengalami penurunan ketika dimodifikasi dengan PEG dari 37,6 emu/g dan 5,2 emu/g menjadi 22,7 emu/g dan 2,6 emu/g.

Penurunan nilai Ms disebabkan oleh penambahan PEG-4000 yang merupakan polimer dengan sifat kemagnetan paramagnetik. Di samping itu kehadiran fasa $\alpha - Fe2O3$ dan $\alpha - FeO(OH)$ yang persifat antiferromagnetik serta $\gamma - FeO(OH)$ yang bersifat paramagnetik, yang terlihat pada hasil pengujian XRD memberikan andil pada turunnya nilai magnetisasi pada sampel[8].

Penurunan juga terjadi pada nilai koersivitas Hc dari 85,6 Oe menjadi 79,6 Oe. Penurunan nilai koersivitas ini berhubungan dengan semakin seragamnya ukuran butir nanopartikel $CoFe_2O_4$ setelah dimodifikasi

Gambar 9: Kurva histeresis nanopartikel (a)CoFe2O4 dan (b) CoFe2O4 dimodifikasi PEG

dengan PEG-4000 yang menyebabkan domain magnet disetiap butirnya hampir sama sehinngga energi *barrier* akan menurun. Sehingga momen magnet akan lebih mudah untuk termagnetisasi.

3.7 Biosensor Magnetik Berbasis Lapisan Tipis GMR

Lapisan tipis GMR berpotensi dikembangkan dalam teknologi biosensor magnetik. Lapisan tipis digunakan sebagai sensor untuk mendeteksi biomolekul formalin yang telah dilabeli nanopartikel magnetik $CoFe_2O_4$.

Untuk semua pengukuran resistansi pada lapisan tipis sebelum dan setelah dilapisi nanopartikel dengan variasi ketebalan *barrier* Cu, pola grafik yang terbentuk adalah magnetoresistansi negatif dimana nilai resistansi akan menurun seiring dengan bertambahnya medan magnet eksternal seperti yang terlihat pada gambar 10. Nilai resistansi maksimum terjadi pada keadaan tanpa medan eksternal (H=0). Hal ini menunjukan bahwa pada

lkatan(gugus fungsi)	$COFe_2O_4$	PEG-4000	$CO_2Fe_2O_4$ +PEG-4000	$CO_2Fe_2O_4$ +PEG-4000+Formalin	jenis fibrasi
O-H	3245,28	3448,72	3425,58	3402,43	Streching
C-H	-	2885,51	2885,51	2924,09	Streching
O-H	1627,92	1635,64	1627,92	-	Bending
C-0	-	-	-	1589,34	Streching
C-H	-	1465,90	1465,90	-	Bending
C-H	-	1342,46	1342,46	1342,46	Bending
C-H	-	1280,73	1280,73	-	Bending
C-H	-	1242,16	1242,16	-	Bending
C-O-C	-	1111,00	1111,00	1095,57	Streching
C-H	-	956,69	956,69	925,83	Bending
C-H	-	840,96	840,96	-	Bending
M-O tet	601,79	-	586,36	594,08	Streching
M-O oct	408,91	-	401,19	-	Streching
M-O	-	-	354,90	362,62	Streching

Tabel 1: Gugus fungsi dan bilangan gelombang hasil analisa FTIR

kondisi tersebut terjadi peristiwa hamburan tukar (*exchange scaterring*) terbesar. Ketika medan eksternal ditingkatkan, maka akan terjadi peningkatan keteraturan arah magnetisasi sehingga hamburan akan semakin berkurang.

Terdapat perbedaan respon magnetik yang berbeda ketika lapisan tipis dilapisi $CoFe_2O_4$, $CoFe_2O_4$ termodifikasi PEG, $CoFe_2O_4$ termodifikasi PEG yang mengikat formalin yang ditandai oleh pergeseran nilai resistansi seperti yang terlihat pada tabel 2. Pergeseran nilai resistansi disebabkan oleh adanya exchange interaction antara moment magnetik lapisan free layer dan moment magnetik pada nanopartikel.

Tabel 2: Hasil pengukuran resistansi untuk variasi ketebalan Cu

Sample	Resistansi maksimum (Ω)		
Sample	Cu 2,2 nm	Cu 2.8 nm	
Lapisan tipis	$71,74 \pm 0,77$	$40,47 \pm 0,50$	
Lapisan tipis + $CoFe_2O_4$	$44,33\pm0,77$	$42,67 \pm 0,68$	
Lapisan tipis $+ CoFe_2O_4$ + PEG	$39,3\pm0,77$	$43.54\pm0,54$	
Lapisan tipis $+ CoFe_2O_4$ + PEG + Formalin	$7083.5\pm0,77$	$49,4\pm0,54$	

Nilai resistansi tertinggi dihasilkan pada lapisan tipis dilapisi $CoFe_2O_4$ termodifikasi PEG yang telah mengikat biomolekul formalin. Hal tersebut berkaitan dengan sifat paramagnetik formalin yang dapat mengurangi sifat kemagnetan $CoFe_2O_4$. Pada lapisan tipis dengan Cu 2,2 nm, nilai resistansi ketika lapisan tipis dilapisi $CoFe_2O_4$ yang termodifikasi PEG berada dibawah nilai resisitansi ketika lapisan tipis dilapisi nanopartikel $CoFe_2O_4$. Penurunan nilai resistansi ini bisa dikaitkan dengan perubahan morfologi nanopartikel $CoFe_2O_4$. Setelah difungsionalisasi dengan PEG ukuran butir nanopartikel menjadi lebih seragam, domain magnet dalam setiap butirnya hampir sama sehingga energi *barrier* akan berkurang. Pada kondisi ini momen magnet akan lebih mudah mensejajarkan diri dengan arah magnetisasi medan

Tabel 3: Hasil pengukuran resistansi untuk variasi ketebalan CoFeB

Sample	Resistansi maksimum (Ω)			
Sample	CoFeB 7 nm	CoFeB 10 nm		
Lapisan tipis	$41,114 \pm 0,45$	$71,74 \pm 0,77$		
Lapisan tipis + $CoFe_2O_4$	$202, 72 \pm 0, 68$	$44,33\pm0,77$		
Lapisan tipis $+ CoFe_2O_4$ + PEG	$32,8\pm0,14$	$39,3\pm0,77$		
Lapisan tipis $+ CoFe_2O_4$ + PEG + Formalin	$681,8\pm1,72$	$7083,5\pm0,77$		

eksternal. Pada lapisa tipis dengan Cu 2,8 nm pergeseran nilai resistansi tidak terlalu signifikan. Hal ini berhubungan dengan rasio magnetoresistance (MR) yang kecil yaitu 1% sehingga menyebabkan sensitivitas lapisan tipis lemah. Resistansi cenderung menurun ketika ktebalan lapisan nonmagnetik Cu bertambah. Pada lapisan barrier yang tebal akan terjadi hamburan pembalikan spin, sehingga spin yang berada pada lapisan barrier dapat menyesuaikan diri dengan arah magnetisasi pada lapisan feromagnetik.

Pada lapisan tipis dengan variasi ketebalan CoFeB, semua pengukuran resistansi pada sebelum dan setelah dilapisi nanopartikel pola grafik yang terbentuk adalah magnetoresistansi negatif seperti yang terlihat pada gambar 11. Berdasarkan data pada tabel 3, resistansi tertinggi diperoleh ketika lapisan tipis dilapisi $CoFe_2O_4$ termodifikasi PEG yang telah mengikat biomolekul formalin. Pada lapisan tipis dengan ketebalan CoFeB 7 nm dan 10 nm nilai resistansi ketika lapisan tipis dilapisi $CoFe_2O_4$ yang termodifikasi PEG berada dibawah nilai resisitansi ketika lapisan tipis dilapisi nanopartikel $CoFe_2O_4$. Hal ini berkaitan dengan perubahan morfologi nanopartikel yang menyebabkan perubahan sifat kemagnetan.

Resistansi cenderung meningkat ketika lapisan ferromagnetik bertambah. Hal ini sesuai dengan teori yang menyatakan bahwa ketika lapisan ferromagnetik telalu tipis, kemungkinan lintasan *mean free path*

Gambar 10: Grafik pergeseran nilai resistansi pada lapisan tipis Cu (a) 2,2 nm dan (b) 2,8 nm yang memberikan respon yang berbeda pada nanopartikel

elektron lebih panjang dari pada ketebalan lapisan ferromagnetik sehingga hamburan tidak terjadi di lapisan ferromagnetik melainkan di *interface*, subtrat atau *caping layer* [8].

Kesimpulan

Pengujian magnetoresistanece pada lapisan tipis GMR spin valve $Co_{90}Fe_{19}B_4/Cu/Co_{90}Fe_{19}/Mn_{80}Ir_{20}$ menunjukkan adanya pergeseran nilai resistansi ketika dilapisi $CoFe_2O_4$, $CoFe_2O_4$ termodifikasi PEG dan $CoFe_2O_4$ termodifikasi PEG yang telah mengikat biomolekul formalin. Hal ini disebabkan adanya exchange interaction antara nanopartikel magnetik dan lapisan free layer CoFeB. Perbedaan ketebalan barrier Cu dan free layer pada lapisan tipis berpengaruh terhadap nilai resistansi yang dihasilkan.

Gambar 11: Grafik pergeseran nilai resistansi pada lapisan tipis CoFeB (a) 10 nm dan (b) 7 nm yang memberian respon yang berbeda pada nanopartikel

Informasi penulis

¹Dinas Sosial Kabupaten Bengkalis, Jalan Antara-Bengkalis, Riau, Indonesia. ²Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21, 55281 Yogyakarta, Indonesia.

Pustaka

- Djamal, M., Ramli: Development of sensors based on giant magnetoresistance material. Procedia Enginering 36, 60–68 (2012)
- Shirota, Y., R.Tsunasima, Imada, Y., Nomura, S., Iwata, Jimbo, M.: Giant magnetoresistance effect in cofeb/cu/cofeb spin valve. Japan Journal Applied Physics 38(2A), 714–717 (1999)
- 3. Djamal, M.: Development of new Giant Magnetoresintance (GMR) Material with Spin-valve Structure using OTMS Reactor. Laporan Hibah Penelitian Asahi Glass Foundation (2009)
- Xu, M., Fan, Y., Luo, G., Mai, Z.: Dependence of giant magnetoresistance on the thickness of magnetic and non-magnetic layers in spin-valve sandwich. Physics

- Letters A. (272), 282–288 5. Mattei, Y.C., Pérez, O.P., Tomar, M.S., Román, F.: Optimization of magnetic properties in cobalt ferrite
- nanocrystal. ENS (2007) 6. Tamhankar, P.M., Kukarni, A.M., Watawe, S.C.: Functionalization of cobalt ferrite nanoparticles with alginate coating for biocompatible application. Material Sciences and application **2**, 1317–1321 (2011)
- 7. Setiadi, E.A., Shabrina, N., Utami, H.R.B., Fahmi, F.N., Kato, T., Iwata, S., Suharyadi, E.: Sintesis nanopartikel cobalt ferrite $(cof e_2 o_4)$ dengan metode kopresipitasi dan karakterisasi sifat kemagnetannya. Indonesian Journal of Applied Physics (2013) 8. E.Y.Tsymbal, D.G.Pettifor: Perspectiveof giant
- magnetoresistance. In: Solid State Physics vol. 56. by H. Ehrenreich dan F. Spaepen, Academic Press, ??? (2011)