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ABSTRACT The use of a non-prismatic member such as a stepped beam as a design method has the ability to function as a tool for steel 
beams optimization. A cover plate is partially welded on the upper and lower flange of the member at the maximum bending moment 
location to increase its flexural strength and, under critical load, flexural members bend about its strong axis, displace to the lateral 
direction, and twist coincidentally through a phenomenon known as the Lateral-Torsional Buckling (LTB). There is, however, no equations 
in the AISC 360-16 specification to calculate the critical moment of a stepped beam (Mst). Therefore, this research focuses on developing 
Mst for a simply supported stepped beam which deforms on its shear center under static-transverse loading through the use of a collapse 
analysis and the behavior of the beam. The results showed the welded cover plates consequently increased the LTB resistance of the 
prismatic I-shaped steel beam from 9.8% to 202% while the critical moment increased more significantly with an increment in the ratio of 
the cover plate length to the unbraced length (α). The cover plate thickness was observed to have dominantly affected only a large α ratio 
while the post-buckling characteristic of large α showed a sudden collapse phenomenon. Furthermore, the LTB modification factor was 
generated in this study due to the initial geometrical imperfection from the first mode of Eigen shape with maximum amplitude Lb/2000 
(Cb1) and stepped beam shape (Cst) which were required to estimate the critical moment of a stepped beam based on the AISC equation 
for a prismatic beam.  
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1 INTRODUCTION 

Steel has always been a useful material for 
building constructions compared to other 
materials due to some of its advantages such as 
the high strength-to-weight ratio required in 
long-span bridges, tall buildings, and poor-
situated steel structures to provide high strength 
for them despite their small weights. There is, 
however, the need for additional steel to stiffen 
these structures against buckling caused by 
slenderness and which reduces their economic 
value (McCormac and Csernak, 2012). 

Non-prismatic member is one of the substantial 
methods to provide more efficient steel design 
optimization and it involves partially fabricating 
web-tapered beams and welding cover plates. For 
instance, the web-tapered beam has a geometric 

deeper web section on the maximum bending 
moment segment and a shallow depth is required 
on the minimum. Moreover, this design involves 
the allocation of more strength and stiffness 
using minimum weight (Kaehler et al., 2011) with 
the ratio of bending moment to moment capacity 
becoming larger. 

Welded cover plates are also applicable to the 
flanges section using the design which serves the 
same purpose as those web-tapered. Therefore, 
the beam which undergoes a sudden cross-
sectional change in a particular segment is 
commonly known as the stepped beam, and its 
failure and geometry in real practices which 
indicates the maximum bending moment on 
mid-span are presented in Figure 1. 

https://jurnal.ugm.ac.id/jcef/issue/archive
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Figure 1. a) the failure mode of a stepped beam in real practice (Yossef, 2015) b) Geometry of a stepped beam.  

Structural engineers prefer using stepped beams 
to web-tapered beams due to the lesser 
complexity in their fabrication as well as the 
Inexpensive cost of production (Park and Kang, 
2004). This has led to an extensive 
understanding of the stepped beam by 
researchers as observed in the study of LTB 
simply supported stepped beam by generating 
the elastic buckling analysis by Trahair and 
Kitipornchai (1971). Moreover, Park and Kang 
(2004) proposed the critical moment of doubly 
and singly stepped beams located at the end 
supports with or without continuous lateral top-
flange bracing. Surla and Park (2015; 2014) 
proved the theoretical findings through the 
experimental study of lateral-torsional buckling 
strength of monosymmetric stepped I-beams. 
Recently, Alolod and Park (2018) examined the 
inelastic buckling capacity of the stepped beam 
at mid-span under a uniform moment. 
Meanwhile, AISC (2016) has considered a critical 
moment equation for prismatic flexural and web-
tapered members but none has been found for 
the critical moment of a stepped beam (Mst) 
which functions as a base to determine the 
flexural strength. 

This study aimed to extend the findings of a 
previous study on stepped beam which was used 
to generate elastic buckling analysis to form the 
critical moment formula without considering the 
initial geometrical imperfection and residual 
stress effect. Therefore, the inelastic and elastic 
critical moment of simply supported stepped 
beam (Mst) located at mid-span under 
concentrated and uniformly distributed load was 
developed using Finite Element Analysis (FEA) 
as well as the collapse behavior of the beam. In 
addition, the research also examined the doubly-

symmetric I-shaped beam with welded cover 
plates on its flanges and this is different from the 
investigation on stepped beam caused by the 
modification of the flange thickness conducted 
by other researchers. 

The development of the modification factor for 
the LTB critical moment due to the effect of the 
cover plate added on upper and lower flange (Cst) 
and the initial geometrical imperfection (Cb1) 
through collapse analysis makes it possible to 
nearly approximate the critical moment of a 
stepped beam (Mst) to the value for the prismatic 
beam before the cover plates were added. Cst Is 
fundamentally defined as the ratio of the critical 
moment of the stepped beam (Mst) to the critical 
moment of the prismatic I-shaped member (Mcr). 
Therefore, the Mst is obtainable using the 
following Equation (1).  

𝑀𝑠𝑡 = 𝐶𝑠𝑡 × 𝐶𝑏1 × 𝐶𝑏 × 𝑀𝑐𝑟 (1) 

2 LITERATURE REVIEW 

2.1 Lateral-Torsional Buckling 

The limit state of flexural members determines 
their nominal moment capacity. Therefore, the 
elastic LTB critical moment equation under a 
uniform bending moment diagram/pure bending 
is shown in Equation (2) (AISC, 2016). 

𝑀𝑐𝑟 =
𝜋

𝐿𝑏

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑏
)

2
𝐼𝑦𝐶𝑤 (2) 

Where, Mcr is the elastic LTB critical moment 
(Nmm), Lb is the length between points braced 
either against the lateral displacement of 
compression flange or the twist of the cross-
section (mm), E is the Young’s Modulus (200.000 
MPa), Iy is the moment of inertia about the y-axis 
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(mm4), G is shear modulus (MPa), J is torsional 
constant (mm4), and Cw is warping constant 
(mm6). 

AISC specification considered the nominal 
flexural strength of compact doubly-symmetric 
I-shaped steel beams and channels. Moreover, 
the plastic moment (Mp) and Lateral-Torsional 
Buckling (LTB) are the limit state for compact 
flexural members depending on their undergoing 
stresses and unbraced length (Lb). The 
relationship between critical stress (Fcr) and Lb is, 
therefore, presented in the following Figure 2. 

 
Figure 2. The relationship between critical stress (Fcr) 
and unbraced segment length (Lb) and its flexural limit 
states. 

The flexural members experience inelastic LTB 
when Lp < Lb< Lr as the critical moment is shown 
in Equation (3). 

𝑀𝑐𝑟 = [𝑀𝑝 − (𝑀𝑝 − 0.7𝐹𝑦𝑆𝑥) (
𝐿𝑏−𝐿𝑝

𝐿𝑟−𝐿𝑝
)] ≤ 𝑀𝑝  (3) 

2.2 LTB modification factor (Cb) 

In most cases, Equation (2) usually produces a 
conservative result due to the fact that most 
beams are not subjected to uniform moment and 
most supports are not simple (Galambos and 
Surovek, 2008). The LTB modification factor (Cb) 
was used for beams under a non-uniform 
bending diagram where both ends are restrained 
against lateral displacement or twist. Its critical 
moment is multiplied by the Cb which was 
obtained using the Equation (4) (AISC, 2016). 

𝐶𝑏 =
12.5 𝑀𝑚𝑎𝑥

2.5 𝑀𝑚𝑎𝑥+3 𝑀𝐴+4 𝑀𝐵+3 𝑀𝐶
    (4) 

Where Mmax is the absolute value of maximum 
moment in the unbraced segment, MA is the 

absolute value of moment at the quarter-point of 
the unbraced segment, MB is the absolute value 
of moment at the centerline of the unbraced 
segment, and MC is the absolute value of moment 
at the three-quarter point of the unbraced 
segment. 

3 ANALYSIS METHOD 

Two methods were used for analysis in this study 
with the first being the bifurcation theory which 
is applicable only in an idealized beam with 
perfectly straight geometry, fully linear elastic 
material, and with the applied load resultant 
passing through the shear center. This theory 
leads to an Eigen problem which when solved 
produces Eigenvalue with the minimum value 
used as the elastic buckling load. The theory is 
also known as the linearized buckling due to the 
assumption of a small displacement assumption 
and this further makes the differential equation 
linear. 

The second method is the collapse analysis 
procedure, and this involves an incremental 
increase in the applied load while the 
displacement is monitored until the beam 
completely collapses. Therefore, the output 
produces a load-displacement curve which Is 
further used to analyze the maximum applied 
load. Meanwhile, a beam with an initial 
geometrical imperfection from the bifurcation 
theory exhibits instability deformation and this 
means the maximum load on the curve as 
Indicated in Figure 3 is equal to the maximum 
buckling load.  

 
Figure 3. Maximum load buckling on the load-
displacement curve. 
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The collapse analysis was preferred in this study 
due to its similarity with real conditions as 
observed with most of the beams mostly having 
an initial imperfection due to fabrication as well 
as the inelastic and plastic behavior they 
experience after reaching the yield stress. 
Moreover, the use of large-displacement 
kinematics makes the differential equation non-
linear and this is suitable for analyzing inelastic 
buckling. 

4 FINITE ELEMENT MODELING 

The ADINA program was used as the non-linear 
analysis software and all the models used a 3D 
shell element with 4 nodes. The boundary 
conditions applied at both ends which are 
supported vertically using a pin-roller including 
full restraint on the torsional rotation and free 
warping.  

4.1 Rigid Link 

The stepped beam consisted of a prismatic I-
shaped beam with the cover plates perfectly 
attached to the weld line. Meanwhile, the rigid 
link connections in FEM performed as the weld 
line on the periphery of the cover plate and the 
gap between the cover and flange plates was 
found to be 0.  

4.2 Steel material 

The steel material has a true stress-strain curve 
with a yield stress (Fy) value of 250 MPa and also 
assumed to be plastic-multilinear, isotropic, 
homogenous, and linear. Meanwhile, every 
fabricated steel has residual stress before being 
subjected to any load due to the fabrication 
process. Moreover, the existing internal stress 
increases throughout the section up to the 
attainment of the critical stress during loading. 
The maximum residual stress of hot-rolled steel 
was valued at 0.3 x Fy with a triangular linear 
pattern and Van der Aa (2015) has found the 
difference between the parabolic and triangular 
patterns of residual stress to be negligible. 
Therefore, a linear-triangular pattern was used 
in the FEM analysis as illustrated in Figure 4. 

\  
 (a) (b) 

 
 (c) 
Figure 4. Residual stress patterns of the hot-rolled steel 
a) Triangular (Van der Aa, 2015) b) Stepwise; 2. The yield 
stress of steel material due to a positive bending 
moment influenced by residual stress  

4.3 Initial Geometrical Imperfection 

According to Salmon et al. (2008), the initial out-
of-straightness for L/1500 amplitude has been 
calculated in the flexural column strength 
curves. Meanwhile, Dharma and Suryoatmono 
(2019) applied the initial out-of-straightness of 
L/1500 value for the non-prismatic column to the 
node where the maximum scale of deformation 
pattern of the first mode of Eigen is located based 
on recommendation while the other nodes follow 
the geometrical imperfection shape. In this 
research, the FEM accommodates the initial 
imperfection of the first buckling mode of Eigen 
obtained from the linear buckling analysis and 
this shape has been reported to be the most 
suitable for LTB compared to others due to some 
certain reasons (Van der Aa, 2015). This theory 
has also been supported by Boissonnade and 
Somja (2012) in their journal.  

The Lb/2000 amplitude, which is smaller, was 
applied to a certain node where the maximum 
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amplitude of the first mode of Eigen is located 
and it produced the insignificant reduction effect 
of the moment capacity of the stepped beam due 
to the incomplete consideration of any effect of 
the Initial geometrical imperfection by the 
theoretical solution of buckling. Therefore, the 
Cst equation was used accurately to approximate 
the moment of the stepped beam (Mst) from the 
theoretical solution (Mcr) but the reduction effect 
due to the imperfection was considered. Figure 5 
illustrates the initial geometrical imperfection 
on FEM. 

 
Figure 5. Initial geometrical imperfection following the 
first buckling mode of the Eigen Analysis (magnified). 

4.4 Loading 

The concentrated and the uniformly distributed 
loads were assigned to the models on the shear 
center as shown In Figure 6. 

 

 (a) (b) 
Figure 6. Applied load in FEM a) Concentrated load b) 
Uniformly distributed load. 

The concentrated load requires a stiffener on 
mid-span to apply each nodal load throughout 

the stiffener for distribution to avoid the nodal 
stress concentration. Moreover, the stiffener 
also functions as a solidifier for the unstiffened 
element against local buckling. 

5 RESULT 

5.1 Preliminary Verification 

The models were supposed to be verified before 
the parametric study and both the elastic critical 
moment of finite element analysis and Equation 
(2) or (3) from verification models presented in 
Table 1 were considered to verify the finite 
element models. Meanwhile, Table 1 shows the 
results based on linearized buckling from several 
verification models. 

The verification results showed the deviation 
ranged from -1.67% to 3.96%. This small amount 
of numerical error indicates the accuracy and 
validity of the model with all its assumptions as 
defined in Chapter 4 and this means it should be 
continuously applied in this study for further 
analysis. Moreover, the first buckling mode 
shape based on the linearized buckling results is 
shown in Figure 7. 

 
Figure 7. First buckling mode shape obtained from 
linearized buckling analysis. 

The WF 400X200 finite element models were 
tested in relation to the collapse analysis 
verification and results are presented in the 
following Table 2. 

 
Table 1. Linearized buckling analysis results for verification models. (Cont.) 

Section Load Lb (m) M0cr (kNm) Cb x Mcr (kNm) %dev.* 

WF 400X200 

CL 
7 262.4 255.9 2.53 
8.5 199.4 193.6 2.99 
9 177.4 178.9 -0.87 

DL 
10 131.9 134.2 -1.67 
11 116.6 118.6 -1.61 
12 104.5 106.3 -1.63 

Stiffene
r 

CL 

DL 

Stiffener 
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Table 1. Linearized buckling analysis results for verification models. (Cont.) 

Section Load Lb (m) M0cr (kNm) Cb x Mcr (kNm) %dev.* 

WF 200X125 

CL 
5 63.6 61.5 3.47 
6 50.2 48.4 3.72 
7 41.5 39.9 3.96 

DL 
8 29.9 29.4 1.88 
9 26.1 25.6 1.96 
10 23.3 22.7 2.41 

* % deviation = 𝐶𝑏×Mcr−M0cr

M0cr
× 100% 

Table 2. Collapse analysis results for verification models.  

Loading Ay (mm) Lb (m) M0cr  (kNm) Cb x Mcr  (kNm) %dev.* 

CL 
2 10 154.600 155.375 -0.50 
2.2 11 138.973 137.310 1.21 
2.4 12 125.860 123.050 2.28 

DL 
2.6 13 97.132 96.312 0.85 
2.8 14 89.868 88.095 2.01 
3 15 82.921 81.202 2.12 

* Ay is Lb/5000 initial geometrical imperfection amplitude 

 

All the models have the maximum initial 
geometrical imperfection Lb/5000 and the values 
obtained were relatively small to Indicate the 
insignificant effect of imperfection on the 
critical moment. Moreover, the verification 
through collapse analysis showed the models are 
accurate and reliable with a maximum deviation 
of 2.28%. The results are similar to linearized 
buckling results and the theoretical solution 
(equation 2), therefore, WF 250X125 verification 
through collapse analysis was not conducted due 
to the possibility of making reference to the 
linearized buckling results. Meanwhile, the 
second verification was conducted on several 
models for the rigid link and the findings are 
presented in Table 3. 

Table 4 compares the critical moment of a model 
with the rigid link connection applied to the 
cover plate periphery nodals and the models with 
the thickness of flanges taken as total thickness. 

The results showed an insignificant difference In 
the values of Mcr_rl and Mcr1 and this means the 
effect of the unconnected plane between the 
cover plate and flange is negligible while the 
beam especially experienced a torsional moment 
in FEM.  

Table 3. Verification models for studying rigid link 
behavior. 

Section Ay (mm) tc (mm) Lb (m) 

WF 250 x 125  

4 5 8 
3 5 6 
2.5 5 5 
2 5 4 

WF 400 x 200 

6 8 12 
5 8 10 
3 8 6 
2.5 8 5 

* Ay is Lb/2000 initial geometrical imperfection 
amplitude  
* tc is the cover plate thickness (mm)  
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Table 4. Collapse analysis result on the rigid link verification.  

 Ay (mm) tc (mm) Lb (m) Mcr_RL (kNm) Mcr1 (kNm) % Dev. 

WF 250 x 125 

4 5 8 64.143 66.157 -3.04 
3 5 6 78.969 82.653 -4.46 
2.5 5 5 87.598 93.238 -6.05 
2 5 4 97.209 105.475 -7.84 

WF 400 x 200 

6 8 12 247.300 252.860 -2.20 
5 8 10 293.825 292.981 0.29 
3 8 6 412.146 402.043 2.51 
2.5 8 5 440.875 444.533 -0.82 

Note:  
Mcr_RL = the critical moment of a model with a rigid link connection on the cover plate periphery nodals (Nmm) 
Mcr1 = the critical moment of a model with flanges thickness taken as total thickness (Nmm) 
% deviation = Mcr_RL− Mcr1

Mcr1
 𝑥 100% 

 
 
5.2 Parametric Study 

A previous study by Park and Kang (2004) showed 
the effect of adding cover plates to the critical 
moment of a stepped beam depends on Its 
unbraced segment length (Lb), cover plate 
thickness (tc), and its width (bc). This study only 
discusses the effect of length and thickness with 
both written in ratios such that parameter α 
represents the ratio of the cover plate length to 
the beam length and β Indicates the ratio of the 
cover plate width to flange width while the total 
thickness of the profile flange thickness was 
notated as γ. The illustration of the whole 
parameters Is shown In Figure 1. 

The ratio of the unbraced length to section 
height (Lb/D) is a prismatic beam dimensionless 
parameter in the analytical model while the 
cover plate parameters for each Lb/D value 
including 25, 21.25, 17.5, 15, 12.5, and 10 in WF 
400 x 200 are presented in Table 5. 

Table 5. Cover plates parameter for WF 400X200. 

α  β γ 

0.167 1.00 1.50; 1.62; 1.77; 2.00 

0.333 1.00 1.50; 1.62; 1.77; 2.00 

0.700 1.00 1.50; 1.62; 1.77; 2.00 

1.000 1.00 1.50; 1.62; 1.77; 2.00 

Meanwhile, those for other values such as 32, 28, 
24, 18, and 16 are presented in Table 6. 

Table 6. Cover plates parameter for WF 250X125. 

The collapse shapes of the stepped beam due to 
the concentrated and uniformly distributed load 
and based on the collapse analysis are shown in 
Figures 8 and 9.  

α β γ 

0.167 1.00 1.56; 1.72; 1.89 

0.333 1.00 1.56; 1.72; 1.89 

0.700 1.00 1.44; 1.72; 2.00 

1.000 1.00 1.44; 1.72; 2.00 
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(a) 

 
(b) 
Figure 8. The collapse shape of the WF 400x200 stepped 
beam for a) α = 0.167 b) α =  0.333.  

 
(a) 

 
(b) 
Figure 9. The collapse shape of the WF 400x200 stepped 
beam for a) α = 0.700 b) α =  1.000. 

The results on the effects of the parameters are 
visualized into the data distribution graphs with 
Figure 10 depicting the Mst Vs Lb curves obtained 
from the collapse analysis of the stepped beam 
under concentrated load on the shear center. 

 
(a) 

(b) 

 
(c) 

 
(d) 
Figure 10. The relationship between Mst and stepped 
beam parameters on WF 400X200 stepped beam for a) 
α = 0.167 b) α 0.300 c) α = 0.700 d) α = 1.000. 
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6 DISCUSSION 

6.1 Stepped beam 

The collapse shapes in Figures 9 show the 
maximum lateral displacement of 0.167, 0.333, 
0,700, and 1,00 α ratios occurred in the mid-span 
and this is in accordance with the theoretical LTB 
deformed shape. Therefore, there Is no particular 
concern in the discussion of the stepped beam 
collapse shape. Moreover, Figure 11 shows the 
load vs. lateral displacement (P-δ curve) for 
several α values. 

 
Figure 11. The relationship between load (P) and lateral 
displacement (δ) for different α ratios. 

The graph clearly shows a greater value of α leads 
to a higher value for the critical load (Pcr) and this 
means an increase in the α ratio has the ability to 
create a sudden collapse of the beam. This is 
evident from the slope of the curve after the 
critical load is reached and a beam was observed 
to have deformed significantly while the current 
load decreased suddenly. This is a post-buckling 
characteristic of the sudden collapse 
phenomenon but a smaller α ratio has a slight 
slope after the buckling point. 

The effect of γ for each group of α is indicated in 
the distribution of data vertically connected by 
lines under both concentrated and distributed 
loads as in Figure 10. The influence of γ for α ≤ 
0.333 was found to be very insignificant with 

respect to Mst but more influence was observed at 
larger α. This means α is strongly dominant in 
the stepped beam design due to the ability of Its 
ratio to determine the effect of the cover plate 
thickness on the section properties.  

The torsion and warping constant are cross-
sectional properties used in determining the 
torsional stiffness of a beam. The addition of the 
cover plate along the flange significantly 
increased the critical moment of the LTB due to 
the Increment In the torsional stiffness. 
However, the length of the cover plate in a 
portion of the span length has an enormous 
effect on the intended stiffness. 

 

6.2 Coefficient analysis 

The rearrangement of the linear relationship in 
Equation (1) made the modification factor for the 
critical moment of the prismatic beam due to the 
addition of the partial cover plate on the upper 
and lower flange is shown in Equation (5). 

𝐶𝑠𝑡 =
𝑀𝑠𝑡

𝑀0𝑐𝑟
 (5) 

In terms of ratio, it is possible to completely 
eliminate the effect of the initial geometrical 
imperfection and the numerical error while the 
proposed equation of Cst was obtained from the 
regression model of the 312 projected in a linear 
equation and second-degree polynomial using α, 
γ, and Lb/D as the variables. Figure 12, however, 
represents the effect of α, γ, and Lb/ D variables 
with respect to Cst.  

The Cst equation was grouped into α ≤ 0.333 and 
α > 0.333 due to the dominant effect of the Lb/D 
ratio on α > 0.333 and a small effect on α ≤ 0.333. 
Accordingly, the equation for α ≤ 0.333 
eliminated the small effect of Lb/D and the 
proposed equation of Cst in the regression model 
is presented in Figures 13 and 14. 
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 (a) (b) 

 
 (c) (d) 
Figure 12. The relationship between all the parameters with respect to Cst for a) α = 0.167 b) α = 0.300 c) α = 0.700 d) α = 
1.000. 

 
 (a) (b) 
Figure 13. Regression model of Cst for the stepped beam under concentrated load for a) α ≤ 0.333 b) α >0.333. 
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 (a) (b) 
Figure 14. Regression model of Cst for the stepped beam under distributed load for a) α ≤ 0.333 b) α >0.333. 

The Cst equations were proposed reasonably 
according to the accuracy of each regression 
model and summarized in Table 8. Moreover, all 
the finite element models contain the initial 
geometrical imperfections following the first 
buckling mode shape with Lb/2000 amplitude. 
This, of course, influences the load-bearing 
capacity of the stepped beam due to the 
occurrence of excessive stress before the steel 
material reaches its yield stress. Therefore, the 
LTB modification factor coefficient due to the 
initial geometrical was required and the equation 
between the critical moment including the initial 
geometrical imperfection of Lb/2000 (M0cr) and 
the Idealized one (Equations 2&3) is presented 
as Equation (6). 

𝑀0𝑐𝑟 = 𝐶𝑏1 ×  𝐶𝑏 × 𝑀𝑐𝑟 (6) 

Figure 15 shows the proposed equation of Cb1 vs 
dimensionless unit (Lb/Lr) with the initial 
geometrical imperfection coefficient expected to 
be limited by 1. 

7 SUMMARY 

The research showed several conclusions 
concerning the LTB of the stepped beam and the 
major summary is the possibility of determining 
the critical moment of the stepped beam (Mst) 
using the Equation (7). 

𝑀𝑠𝑡 = 𝐶𝑠𝑡 × 𝐶𝑏1 ×  𝐶𝑏 × 𝑀𝑐𝑟 (7) 

The γ ratio or cover plate thickness only has a 
significant effect on the critical moment of 
stepped beams (Mst) in the greater α ratio (α > 
0.333). Therefore, it is possible to obtain the 
optimum cover plate thickness for α ≤ 0.333 from 
the minimum thickness of the compactness 
requirements of AISC 360-16. In addition, the 
inelastic post-buckling characteristic showed a 
sudden collapse for α > 0.700, and the rigid link 
connection was found to be applicable as a 
welding line in FEM. However, the unconnected 
nodes between the cover plate and flange do not 
affect the critical moment even though it 
experiences a torsional moment. 
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Figure 15. Proposed Cb1 equations for the stepped beam that experienced inelastic or elastic LTB.  

Table 7.  The proposed equations of Cst for concentrated and uniformly distributed load classified by α ratio. 

Loading Classification 
Proposed Equations 
X Cst 

Concentrated Load 
α ≤ 0.333 α1.5(γ0.4 – 1) -63.4 X2 + 12.3 X + 1 
α > 0.333 (Lb/D)1/2α0.8(γ1.4 – 1) 0.395 X + 1 

Distributed Load 
α ≤ 0.333 α1.5(γ0.4 – 1) -42.2 X2 + 8.2 X + 1 
α > 0.333 (Lb/D)0.35α1.2(γ1.3 – 1) 0.288 X + 1 
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