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ABSTRACT Soil erosion in highly gullied regions of Kashmir valley is a serious global issue due to its impacts on economic productivity 
and environmental consequences such as land disintegration and one of the most affected areas is Lolab which is flood-prone and has 
witnessed several disastrous floods in the past. This means assessment of hydrological behavior should be highly prioritized and the 
most problematic sub-basins contributing to the erosion and excessive runoff identified to formulate and apply proper management 
strategies. This study integrated the Soil and Water Assessment Tool (SWAT) with Arc software to simulate the runoff and sediment yield 
of Lolab Watershed. The method was applied due to its flexibility in inputting data requirements and the capability to model larger 
catchments and mountainous areas. Meanwhile, sensitivity analysis showed the most sensitive four parameters for runoff estimation 
with the initial soil conservation service curve number II rated to be the highest and two others were found for sediment estimation with 
channel erodibility factor rated highest. The calibration of the values of these sensitive parameters led to the provision of reliable Nash-
Sutcliffe (NSE) and Coefficient of determination(R2) efficiencies which makes SWAT a good analyzing tool to assess the hydrological 
behavior of highly gullied region and un-gauged basins of Kashmir. These factors were found to be above 0.90 for both runoff and 
sediment yield and the sediment yield rates were estimated using SWAT at individual sub-basin levels after which a prioritization map 
was prepared to determine the most problematic sub-basins in the watershed. 
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1 INTRODUCTION 

Soil erosion has been a long-standing problem 
throughout the globe with adverse effects on 
crop productivity and the functioning of civil 
structures. This has led to the prioritization of 
watershed management at the grass-root level to 
limit the disintegration of arable lands and 
malfunctioning of hydraulic structures 
(Nikolaidis et al., 2013; Bisantino et al., 2015)). 
This involves the optimum utilization of 
watershed resources without compromising the 
balance between natural resources and the 
environment (Van Andel, 2010). There are 
several conventional methods of evaluating soil 
loss from a watershed but the reliability of their 
prediction is tedious and time-consuming and 
this led to the introduction of watershed models 

which have revolutionized the process of 
analyzing catchment hydrology by producing 
reliable output while saving the precious time of 
decision-makers. These models are divided into 
three different categories which are empirical, 
conceptual, and physical. The empirical models 
analyze the hydrological parameters using the 
coefficients evaluated from actual observation or 
measured data (Wheater et al., 1993), conceptual 
models incorporate a general depiction of the 
catchment to avoid point by point data 
necessities and represent catchment as a 
progression of internal storages (Sorooshian, 
1991) while the physical models analyze the 
entire erosion process by evaluating the 
individual components from the solution of 
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corresponding equations. They all, however, vary 
significantly in their analysis of parameters, 
input and output flexibility, scale accountability, 
processing ability, computational efficiency, and 
capability to model the changes in the 
catchments. There is, therefore, the need to use 
the appropriate model to predict the runoff and 
sediment yield from the watershed and identify 
the most problematic sub-basins for rational 
utilization of land, soil, and water resources 
(Himanshu et al., 2017). This is necessary 
considering the possibility of having one model 
performing effectively in a certain range of 
conditions and lacks the capacity to do the same 
in others. A comprehensive review of models and 
their global application have shown SWAT, 
ANSWERS, AGNPS, WEPP, and SHETRAN to be 
the most capable for prediction and assessment 
of several hydrological parameters such as runoff 
and sediment yield and this makes them more 
reliable to accomplish sustainable watershed 
management practices (Gull and Shah, 2020). 
SWAT has been reported to have the advantage 
of working better in large watersheds and 
mountainous areas as well as in predicting 
runoffs (Shen et al., 2009). It performs effectively 
in hilly areas and serves as a better tool for the 
general assessment of hydrological parameters 
(Pradhan et al., 2020). Attempts have been made 
to predict the runoff and sediment yield of Lolab 
watershed using a combination of manual and 
auto-calibrated SWAT models for a different set 
of time and with low-resolution input data (Gull 
et al., 2017). SWAT model has also been found to 
be suitable for best management practices of 
watersheds and reported to be useful for a wide 
range of conditions (Zhang et al., 2014). 

2 METHODS 

Soil and Water Assessment Tool (SWAT) was 
used in this research due to its ability to predict 
the impact of land management practices on the 
hydrology of large complex watersheds. The 
main focus of the study was to determine the 
efficiency of the model using a high-resolution 

input data and comparing its output with the 
actual runoff and sediment yield values observed 
in Pohru watershed and the sub-basins identified 
to have the maximum amount of sediments. 

2.1 Model Description 

SWAT is a river basin scale and continuous 
spatially distributed physical watershed model 
designed to simulate different hydrological 
parameters in large complex watersheds and also 
capable of being integrated with GIS interface 
(Arnold et al, 1998). It creates Hydrologic 
Response Units to analyze the diversity of a 
catchment in terms of land use/land cover, soil 
characteristics, and slope while the movement of 
water in the channel and overland flow are 
simulated in the routing and land phases of the 
model, respectively. The movement of water on 
the surface was analyzed using the water balance 
equation provided by Setegn, et al. (2008) as 
shown in the following Equation (1): 

SWt = SW0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑡
𝑖=1

𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑥    
 (1) 

Where, SWt is the final soil water content in 
millimeters, SW0 is the initial soil water content 
in millimeters, t is time in days, Rday is the 
precipitation of day x in millimeters, Qsurf is the 
surface runoff on day x in millimeters, Ea is the 
evapotranspiration on day x in millimeters, 
Wseep is water entering the vadose zone on day x 
in millimeters, and Qgw is the return flow on day 
x in millimeters. 

SWAT has the ability to calculate surface runoff 
using two methods (Neitsch et al., 2011) and this 
allows the user to select the most suitable 
method according to the data and output 
requirement available. Moreover, the SCS curve 
number method (SCS, 1985) used in analyzing 
runoff is presented in Equation (2) as follows: 

Qsurf = (𝑅𝑑𝑎𝑦−𝐼𝑎)
2

(𝑅𝑑𝑎𝑦−𝐼𝑎+𝑆)
    (2) 
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Where, Rday is the precipitation of day x in 
millimeters, Ia is the initial abstractions 
including surface storage, interception, and 
infiltration prior to the runoff in millimeters, 
and S is the surface retention in millimeters 
which depends on the soil water content and 
calculated using Equation (3). 

S = 25.4(1000
𝐶𝑁

-10    (3) 

Where, CN is the curve number for the day. The 
modified version of the Universal Soil Loss 
Equation (Wischmeier and Smith, 1978) is 
usually used by SWAT to calculate the sediment 
drawn from a particular response unit provided 
in Equation (4) as follows: 

Tsediment = (𝑄𝑠𝑢𝑟𝑓 × 𝑞𝑝𝑒𝑎𝑘 × 𝐴ℎ𝑟𝑢)0.56 
Kusle×Cusle×Pusle×LSusle×Cfrg (4) 

Where, Tsediment is the sediment yield in metric 
tons, Qsurf is the surface runoff volume in 
millimeters per hectare, qpeak is the peak runoff 
rate in m3/s, Ahru is the area of hydrologic 
response unit in hectares, Kusle is the soil 
erodibility factor, Cusle is the cover and 
management factor, Pusle is the support practice 
factor, LSusle is the topographic factor, and Cfrg 
is the coarse fragment factor. The description of 

the SWAT model and its different components is 
explained in the documentation provided by 
Neitsch et al (2011). 
 

2.2 Study Area 

Lolab watershed presented in Figure 1 is one of 
the watersheds in Pohru catchment with an area 
estimated to be 45 km2 and classified in three 
different physiographic units which are flood 
plains, karewas, and mountains (Ahmed and 
Mir., 2014). It lies between 34 ̊41’ to 34 ̊24’ N 
Latitude and 74 ̊ 09’ to 74 ̊ 23’ E Longitude with 
the elevation starting from 1500 meters and 
reaching up to 3900 meters. The study area is 
mostly dominated by cambrio-slurian formations 
and panjal traps followed by Agglomeratic slates, 
granites and recent alluvium (Thakur and Rawat, 
1992) with the most of the land used for 
agriculture as observed with 34.14 % of the total 
watershed area it covers followed by the sparse 
forest cover with 26.18 %. The major class of soil 
in Lolab is Fine Loamy which accounts for 
79.58% of the total watershed area and, being a 
mountainous area, it majorly varies from steep 
to very steep with the slope found to be more 
than 9 degrees. 

Figure 1. Study Area (Lolab Watershed of Pohru Catchment) 
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2.3 Data Requirement and Preparation 

Different inputs were used by SWAT at 
watershed, sub-basin, and HRU (Hydrologic 
Response Unit) levels (Arnold et al., 2012). The 
watershed level input was used to model the 
evapotranspiration applied in analyzing all the 
HRU’s in the watershed, sub-basin level inputs 
such as precipitation and temperature data were 
implemented to simulate all the HRU in a 
particular sub-basin while the HRU level inputs 
were set to unique values for individual HRU 
such as management scenarios. Moreover, 
ArcSWAT 2012 required a spatial database 
digital elevation model (DEM), land use/land 
cover, and soil characteristics while 
meteorological data used include daily rainfall, 
temperature, relative humidity, solar radiation, 
wind speed, etc. Hydrological data were also 
observed to conduct sensitivity analysis. 

2.4 Model Setup 

SWAT model (2012 version) was integrated with 
ArcGIS (version 10.1) to ensure the effective use 
of spatial data in enhancing model behavior and 
providing a user-friendly editing environment. 

Watershed was automatically delineated into 
sub-basins and further into Hydrologic Response 
Units (HRUs) to describe spatial heterogeneity in 
terms of slope, land cover, and soil 
characteristics within the catchment. The first 
step was to import a 30 m ×  30 m resolution 
Digital Elevation Map after which a polyline 
stream network data set was burnt into SWAT to 
improve the hydrological segmentation and 
reduce the processing time. The different inputs 
used by the model and their source are listed in 
Table 1. Moreover, a threshold critical source 
area of 300 hectares was used and delineated 
into 43 sub-basins while a land use/ land use 
cover map with 100 m × 100 m resolution in a 
projected grid format was loaded into the SWAT 
along with the soil data to determine the spatial 
heterogeneity within each sub-basin to delineate 
the 43 sub-basins into 182 Hydrologic Response 
Units by considering 5%, 10%, and 10% 
threshold levels for land use, soil, and slope 
classes respectively. The land use classifications 
were also re-classified to match the classes 
recognized by SWAT as shown in Table 2. 

Table 1.  Sources of different inputs used in this study. 

S/No Input Source Resolution Use 
1 DEM Derived from 30-meter STRM 

Data set 
30 m × 30 m a) Delineation of 

watershed  
b) Analysis of drainage 

pattern 
c) Derivation of slope 

2 Land use / Land 
cover 

Department of Geography, 
University of Kashmir 

100 m × 100 m a) Categorization of area  
b) Affects Runoff, 

evapotranspiration 
and other hydrological 
processes 

3 Soil data Soil conservation Department, 
Kashmir 

250 m × 250 m 
3 soil profiles 

a) Categorization for 
individual HRU’s 

4 Weather data Meteorological Department of 
Kashmir 

4 gauging stations Model inputs for 
evaluation of hydrological 
data 

5 Measured data 
for runoff and 
sediment yield 

Irrigation and Flood Control 
Department Kashmir 

Daily data from Jan 
2009 - Dec 2017 

Data used for calibration 
and validation of 
estimated data 
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Table 2. Re-classification of Land-use/ Land cover classes 

S/ 
No 

Land use 
Class 

Re-classification 
into 4-letter 
SWAT code 

Percentage 
area  

1 Dense 
forests 

FRSD 9.18 

2 Moderate 
forests 

FRSD 8.98 

3 Sparse 
forests 

FRSD 26.18 

4 Agriculture AGRL 34.14 
5 Horticulture RNGE 10.39 
6 Water 

bodies 
WATR 7.52 

7 Snow WATR 3.61 

 

SWAT description used in reclassifying land 
use/land cover map was obtained from USDA-
NASS (The United States Department of 
Agriculture-National Agricultural Statistics 
Science cropland data layer). 

2.5 Model Calibration and Validation 

SWAT model was applied to the watershed 
understudy for 8 years from 2010-2017 with 
those from 2010-2013 used for calibration while 
2014-2017 was used for validation. The SWAT 
has manual calibration as well as auto-
calibration built-ins, but the manual calibration 
was avoided in this study because it is a time-
consuming procedure (Eckhardt & Arnold, 2001) 
and its successes depend on the experience of 
the modeler. The Auto-calibration technique 
was, however, implemented to calibrate and 
determine the optimal parameters using the 
Shuffled Complex Evolution Method (SCEM) 
algorithms (Arnold et al., 2012). Moreover, after 
the most sensitive parameters for both stream-
flow and sediment yield have been determined, 
the model was validated and its efficiency 
evaluated using Coefficient of determination (R2) 
and Nash-Sutcliffe Coefficient (NSE) provided in 
Equations (5) and (6) respectively (Tuppad et al., 
2011). 

NSE = 1-  ∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2𝑛

𝑖=1

∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑀𝑒𝑎𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
2𝑛

𝑖=1

  (5) 

R2= { ∑ (Observedi−Observedmean
n
i=1 )(Predictedi−Predictedmean]

[∑ (Observedi−Observedmean)
2]n

i=1
1/2

[∑ (Predictedi−Predictedmean)
2]n

i=1
1/2}

2

 

(6) 

Where, NSE is Nash-Sutcliffe coefficient, R2 is 
coefficient of determination,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 is the 
actual data measured for the period i,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 
is the data estimated by the model for the period 
i,𝑀𝑒𝑎𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the mean of the actual data 
measured,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑚𝑒𝑎𝑛 is the mean of data 
estimated by the model, and n is the number of 
values compared. 

Nash-Sutcliffe provides the efficiency between -
∞ to 1 in order to relate the goodness-of-fit of 
the model with the variance of observed data. An 
efficiency of 1 indicates a perfect match between 
the data estimated by the model and those 
actually observed, zero means the data estimated 
is as accurate as the mean of those observed, a 
value less than zero depicts inefficiency of the 
model while the values between 0.7 to 1 show 
the model predicts extremely well (Calder, I.R., 
1998). 

The coefficient of determination value lies 
between zero and 1 with the zero indicating lack 
of correlation between the actual measured data 
and those predicted by the model while 1 
indicates a perfect match between the two sets of 
data. 
 

3 RESULTS AND DISCUSSION 

The first simulation by SWAT was unable to 
quantify the desired outcome with the actual 
peak discharges underestimated and the model 
calibration was considered necessary. The four 
most sensitive parameters were identified and 
calibrated accordingly to improve the efficiency 
of the model and later modified according to the 
procedure and ranges defined in the 
documentation (Arnold et al., 2012). Moreover, 
the initial soil conservation service Curve 
Number II was increased from the original value 
by 16% to amplify the runoff through a reduction 
in the total infiltration. The available soil water 
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capacity was also reduced by 10% to increase the 
movement of water through soil layers while the 
average slope length was moderated for each 
sub-basin with the values ranging from 46m-
290m throughout the 43 sub-basins. 
Furthermore, the saturated hydraulic 
conductivity was decreased by 8% to reduce the 
lateral flows. All these sensitive parameters used 
in estimating runoff are summarized in Table 3 
with their ranks.The two most sensitive 
parameters identified to calibrate the sediment 
include channel erodibility and cover factors 
with values adjusted to 0.65 and 0.43 
respectively as summarized in the following 
Table 4. 

The monthly observed values and those 
predicted by the model for runoffs in the 
calibration period 2010-2013 were in an average 
relationship with each other as indicated by the 
Nash-Sutcliffe efficiency and Coefficient of 
determination which was 0.56 and 0.81 
respectively as shown in Figure 2 and observed 
to have increased to 0.98 and 0.99 for the 
validation period 2013-2017 as presented in 
Figure 3. The efficiency of SWAT with the fitting 
equation between observed and simulated values 
for runoff during calibration and validation 
period is presented in Table 5. 

 
Figure 2. Scatter plot showing the relation between 
observed and predicted runoff (Calibration period) 

 
Figure 3. Scatter plot showing the relation between the 
observed and predicted runoff(Validation period). 

Table 3. Most sensitive parameters for runoff estimation 

Parameter Rank Range of calibration Calibrated value 
Initial Soil Conservation Service Curve Number II 1 ±25% 16% 
Available Soil Water Capacity 2 ±25% 10% 
Average Slope Length in meters 3 10 to 300 46-290 
Saturated Hydraulic Conductivity (mm/h) 4 ±15% 8% 

Table 4. Most sensitive parameters for Sediment yield estimation 

Parameter Rank Range of calibration Calibrated value 
Channel erodibility factor 1 0-1 0.65 
Channel cover factor 2 0-1 0.43 

Table 5. Efficiency of the SWAT model to predict runoff during calibration and validation period 

Observed and Predicted 
Runoff(mm) 

Nash-Sutcliffe 
Efficiency 

Coefficient of 
determination 

Linear fit equation 
(Y= predicted flow; x=observed flow) 

Calibration Period (2010-2013) 0.56 0.81 Y= 0.66x+5.89 
Validation Period (2013-2017) 0.98 0.99 Y=0.93x-0.21 
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The SWAT model showed satisfactory results 
during the process of modeling the sediment 
yield as observed with the Nash-Sutcliffe 
efficiency and Coefficient of determination 
recorded at 0.75 and 0.76 respectively during the 
calibration period as indicated in Figure 4.  The 
values were observed to have increased to 0.91 
and 0.94 during the validation period as shown 
in Figure 5. These values along with the fitting 
equations are presented in Table 6. Meanwhile, 
SWAT tended to underestimate the runoff during 
high-flow periods even though the statistical 
evaluation showed satisfactory runoff simulation 
for both calibration and validation periods. This 
is partly associated with the inability of the 
present curve number technique to generate 
accurate runoff prediction for a day with an 
experience of several storms. Meanwhile, soil 
moisture level and corresponding runoff curve 
number have been reported to be varying from 
one storm to another (Kim et al., 2018) while 
SCS-CN methods were used to define a rainfall 
event as the sum of all rainfall in one day and 
this has the ability to lead to underestimation of 
runoff (Chow et al., 1988). 

The bar-charts showing the variation between 
the observed and predicted values of runoff 
during the calibration and validation periods are 
presented in Figure 6 and 7 respectively. A plot 
of monthly observed and predicted sediment 
yield during the calibration and validation 
periods are shown in the form of bar-charts in 
Figure 8 and 9 respectively 

 
Figure 4. Scatter plot showing the relation between the 
observed and predicted sediment (Calibration period) 

 
Figure 5. Scatter plot showing the relation between the 
observed and predicted sediment (validation period) 

Table 6. Efficiency of the SWAT model to predict sediment yield during calibration and validation period. 

Observed and Predicted 
Sediment yield (t/ha) 

Nash-Sutcliffe 
Efficiency 

Coefficient of 
determination 

Linear fit equation 
(Y= predicted yield; x=observed yield) 

Calibration Period (2010-2013) 0.75 0.76 Y= 0.88x+2.58 
Validation Period (2013-2017) 0.91 0.94 Y=0.85x+2.42 
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Figure 6. Bar-chart showing monthly values of observed and predicted runoff during the calibration period. 

Figure 7. Bar-chart showing monthly values of observed and predicted runoff during the validation period. 

 
Figure 8. Bar-chart showing monthly values of observed and predicted sediment yield during the calibration period. 

 
Figure 9. Bar-chart showing monthly values of observed and predicted sediment yield during the validation period. 
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The annual average sediment drawn from each 
sub-basin was calculated to determine the most 
problematic sub-basins which were used to 
prepare the prioritization map shown in Figure 
10. 

The sub-basins were categorized into very 
severe, severe, medium, and low severity areas as 
shown in Table 7, and approximately 40% of the 
total area of the watershed were classified as 

very severe to severe erosion zone. Moreover, 
the existing conditions of the sub-basins 
numbered 1, 4, 6, 7, 28, and 37 were found to be 
generating maximum annual average sediment 
yield. It is, however, possible to reduce this 
through several intervention strategies such as 
land slope stabilization, construction of bench 
terraces, changing the land use of the steep area, 
and afforestation 

 

 

Figure 10. Watershed prioritization map shoving the severity level of erosion in different sub-basins 

Table 7. Severity level of sub-basins of Lolab watershed 

S/No 
Severity 
level 

Sub-basin numbers 
Percentage 
area 

Annual average 
sediment yield 
(t/ha/yr) 

1 Very severe 1,4,6,7,28,37 10.47 80-120 
2 severe 2,3,5,15,18,20,21,25,26,42,43 29.17 40-80 
3 medium 8,10,13,14,17,22,23,38,39 24.22 20-40 
4 low 9,11,12,16,19,24,27,29,30,31,32,33,34,35,36,39,40,41 36.14 0-20 
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4 CONCLUSION 

It is necessary to understand the hydrological 
parameters at sub-basin or even smaller levels in 
order to determine the most problematic areas 
and factors responsible for the degradation of 
the whole watershed even though several efforts 
have been made to address the soil erosion 
problem at the grass-root level and different 
conventional methods applied to determine 
hydrological behavior at the watershed level. 
This study made use of a semi-distributed 
physical model known as SWAT (Soil and Water 
Assessment Tool) to assess the hydrological 
behavior of a small watershed in Pohru 
catchment of Kashmir valley. The aim was to 
determine the efficiency of the model in 
predicting the runoff and sediment yield of Lolab 
watershed and identify the most problematic 
sub-basins drawing the maximum amount of 
sediment. 

The values estimated by the model were 
compared with the actual data and they were 
both observed to be in good agreement as 
indicated by Nash-Sutcliffe efficiencies found to 
be 0.56 and 0.75 for runoff and sediment yield as 
well as the coefficient of determination at 0.81 
and 0.76 respectively during the calibration 
period. These values were discovered to increase 
to 0.98 and 0.91 for Nash-Sutcliffe and 0.99 and 
0.94 for the coefficient of determination for 
runoff and sediment yield respectively during 
the validation period. 

A prioritization map was prepared to determine 
the areas drawing the maximum amount of 
sediment in order to apply the appropriate 
intervention strategies to manage the watershed. 
The SWAT was also generally found to be a good 
analyzing tool to assess the hydrological 
behavior of highly gullied regions and other un-
gauged basins of Kashmir valley. 
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