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1 INTRODUCTION 

1.1 Background 

Zieman (2010) states that the non-prismatic 

column or tapered column is a column that has a 

continuously varying cross-section along its 

length. The reason behind the application of such 

a column section is to use material efficiently and 

increasing its load-carrying capacity. Nowadays 

tapered-web sections are frequently used in steel 

structures. Usually, the tapered web column is 

made by integrate 3 plates for its web and flanges. 

Timoshenko and Gere (1963) proposed an 

analytical solution of the buckling load of linearly 

tapered-web cantilevered column expressed in 

Equation (1) assuming that the variation of 

moment of inertia is to the nth-power along the 

column length.   

Pcr= 
mEImax

L2   (1) 

where E is the material modulus of elasticity, Imax 

is the maximum moment of inertia of the column, 

L is column length, and m is a constant that 

depends on n and the ratio of the minimum 

moment of inertia of the section to the maximum 

one.  

Lee et al. (1972) propose an equation of buckling 

load to tapered-web column as expressed in 

Equation (2). In order to acquire the buckling load 

of such column, that equation employs an 

equivalent length of prismatic column with the 

smallest cross-section along its length. 

Pcr= 
EImin

(gL)2  (2) 

where g is the equivalent length factor expressed 

in Equation (3) and Imin is the minimum moment 

of inertia of the column. 

g = 1-0.375γ+0.080γ2(1-0.075γ)  (3) 

and γ = 
db

dt
  (4) 

where db is larger depth and dt is smaller depth of 

the column section. 
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Ibrahim (2017) purpose elastic buckling load of 

tapered-web column as expressed in Equation (5). 

In order to acquire elastic buckling load, that 

equation employs buckling load factor. Buckling 

load factor depend on ratio between maximum 

and minimum of the moment inertia and support 

condition of the column.  

Pcr= γcr

EI

(L)2  (5) 

Where I is moment inertia of the prismatic 

column, γcr  is the buckling load factor which 

depends on the ratio of moment inertia and 

support condition of the column.  

Riahi et al. (2012) purpose elastic buckling load of 

tapered-web column is expressed in Equation (6). 

Equation (6) employs length factor of the column 

to calculate elastic buckling load of tapered-web 

column.  

𝑃𝑐𝑟 =
𝐸𝐼𝑚𝑖𝑛

(κγ𝐿)
2  (6) 

Where κγ  is length factor expressed in Equation 

(7) 

κγ=
1

η√μ2+
1

4

  (7) 

Where η  is section constant and μ  is load 

constant. 

In Eurocode (2005), the buckling load of non-

prismatic cross-section needs to be determined 

by second-order analysis. However, based on 

their research, Marques et al. (2014) conclude 

that second-order analysis is not reliable, and 

iteration formula for prismatic section is 

proposed for tapered-web column. 

Tanakova et al. (2017) analysed tapered-web 

columns numerically, experimentally, and 

analytically and compared the results. The 

dimensions of three columns and one beam-

column analysed are shown in Table 2. Column 

means the member is subjected to axial load. 

Beam-column means the member is subjected to 

axial and moment load at the same time. The 

members consist of two types of shape, L-shape 

and V-shape as shown in Figure 1.  

In the analytical procedure, they used Eurocode 

(2005) and adapted the iteration formula for 

tapered-web proposed by Marques et al. to obtain 

buckling load and compared the results with the 

numerical and experimental results as shown in 

Table 1. 

Kucukler and Gardner (2018) proposed stiffness 

reduction method to acquire buckling load of 

tapered-web member. The reduction factor is 

defined based on the type of loading and the ratio 

of applied load to the plastic capacity of the 

corresponding loading type.  

Analysis using the stiffness reduction method 

consists of 4 steps. First, the column is divided 

into small segments with appropriate prismatic 

sections. Second, the stiffness reduction factor of 

each segment is calculated based on the applied 

load. Third, geometrically non-linear analysis of 

the segmented member with reduced stiffness is 

performed. Finally, cross-section strength is 

checked.   

AISC 360-16 provides a critical axial load for 

prismatic column section due to buckling failure 

based on SSRC Curve 2. Bjorhovde, R (1972) 

proposed SSRC Curve 2 that shows the ratios 

between the buckling load to the plastic capacity 

of the column with initial out-of-straightness 

L/1000 for every slenderness ratio as seen in 

Equation (8). 

λ = 
1

π
√

Fy

E

L

r
   (8) 

where Fy is yield stress of the material and r is 

radius of gyration of the prismatic column 

section. 

 

Table 1. Experimental, numerical, and analytical 

buckling loads obtained by Tanakova et al. (2017) 

Test 
Experimental 

(kN) 

Numerical 

(kN) 

Analytical 

(kN) 

C1 1397.6 1393.0 1311.7 

C2 1313.6 1289.9 1172.9 

C3 1460.0 1449.4 1244.8 

BC 379 386.9 275 
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Table 2. Dimension in experimental analysis by Tanakova et al (2017) 

Test γ Shape 
dt 

(mm) 

db 

(mm) 

bt 

(mm) 

bb 

(mm) 

tw 

(mm) 

tf.top 

(mm) 

tf.bot 

(mm) 

L 

(m) 

C1 4 V 120 480 100 100 12 12 12 6 

C2 2 V 185 370 110 110 6 12 12 6 

C3 3 L 120 360 100 100 10 16 16 6 

BC 3 L 120 360 100 100 10 16 16 6 

 
Figure 1. a) Tapered L-shape member (Left); b) tapered V-
shape member (Right) by Tanakova et al (2017) 

Salmon et al. (2009) state AISC 360-16 substitutes 

initial out-of-straightness and slenderness ratio 

by Bjorhovde (1972) to L/1500 for initial out-of-

straightness and slenderness ratio as expressed in 

Equation (9). AISC 360-16 provides equations for 

flexural-, torsional-, and local- buckling loads. 

Flexural buckling load of non-slender element is 

given by Equation (10) and (11). 

λ = 
KL

r
   (9) 

Pcr = (0.658
Fe
Fy) FyAg for Fe≥0.44Fy (10) 

Pcr= 0.877FeAg for Fe<0.44Fy (11) 

Where Fe  is elastic buckling stress expressed in 

Equation (12). 

Fe= 
π2EI

(
kL

r
)

2 (12) 

where Ag is gross section area of the column and 

K is effective length factor (K = 1 for simply 

supported column). 

Kaehler et al. (2011) state that tapered-web 

column sections have much more major axis 

buckling strength but only slightly more minor 

axis buckling strength compared to prismatic 

section with the smallest cross-section along its 

length. Buckling strength is affected by moment 

of inertia linearly. Tapering the depth of the 

section increases the major axis moment of 

inertia significantly, but the minor axis moment 

of inertia is nearly constant. Therefore, the 

buckling strength of tapered-web column in its 

minor axis is usually assumed to be the same as 

for prismatic section. 

AISC 360-16 does not provide calculation to 

obtain buckling load of web-and-flange-tapered 

section. In this study, non-prismatic web-and-

flange-tapered column sections are analysed 

numerically. This study proposes multiplier that 

can be applied to the buckling load of prismatic 

column with an average cross section along its 

length to obtain buckling load of the 

corresponding tapered-web-and-flange column 

section. Buckling load of prismatic column is 

computed using the equations in AISC 360-16.  

1.2 Parameter Study 

In this study finite element method is used to 

obtain buckling load of non-prismatic web-and-

flange-tapered column section. Finite element 

method requires defined parameters to analyse 

the problem. The parameters are geometry of the 

column, element type meshing in modelling 

process, axial load, and boundary conditions.  

Tapered ratios of non-prismatic column section, 

dt/db and bt/bb, are shown in Table 3. Symbols d 

and b represent depth and width of the cross 

section, respectively. Subscripts t and b represent 

the top and bottom of the column, respectively. 

Using the maximum section dimension as 500 

mm x 500 mm in the bottom of the column and 

based on given tapered ratios, non-prismatic 

column cross-section dimensions are shown in 

Table 4 with flange thickness of 18 mm and web 

thickness of 15 mm. Column is made of steel with 

yield stress of 250 MPa and the material is 

assumed to be in an elastic-perfectly plastic. 
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The column is simply supported with roller 

support at the top and hinge at the bottom. 

Translation in X and Z directions are prohibited 

to model the roller. Translation in X, Y, and Z 

directions are prohibited to model hinge 

behaviour. Both top and bottom cross sections are 

prevented from twisting. Axial loading is given at 

the top of the column where the vertical 

translation is possible. See Figure 3 for loading 

and boundary conditions and the definition of the 

axes. 

Table 3. Tapered ratio of non-prismatic tapered-web-

and-flange column  

dt/db bt/bb L (m) 

0.3 0.3 6 

0.3 0.3 7 

0.3 0.3 8 

0.3 0.5 6 

0.3 0.5 7 

0.3 0.5 8 

0.3 0.7 6 

0.3 0.7 7 

0.3 0.7 8 

0.5 0.3 6 

0.5 0.3 7 

0.5 0.3 8 

0.5 0.5 6 

0.5 0.5 7 

0.5 0.5 8 

0.5 0.7 6 

0.5 0.7 7 

0.5 0.7 8 

0.7 0.3 6 

0.7 0.3 7 

0.7 0.3 8 

0.7 0.5 6 

0.7 0.5 7 

0.7 0.5 8 

0.7 0.7 6 

0.7 0.7 7 

0.7 0.7 8 

 

 

Figure 2. Shell281 as defined in Element Reference ANSYS 
Release 11.0 (2007) 

 

Table 4. Column Dimensions 

dt × bt  

(mm) 

davg × bavg 

(mm) 

db × bb  

(mm) 

L (m) 

150 × 150 325 × 325 500 × 500 6 

150 × 150 325 × 325 500 × 500 7 

150 × 150 325 × 325 500 × 500 8 

150 × 250 325 × 375 500 × 500 6 

150 × 250 325 × 375 500 × 500 7 

150 × 250 325 × 375 500 × 500 8 

150 × 350 325 × 425 500 × 500 6 

150 × 350 325 × 425 500 × 500 7 

150 × 350 325 × 425 500 × 500 8 

250 × 150 375 × 325 500 × 500 6 

250 × 150 375 × 325 500 × 500 7 

250 × 150 375 × 325 500 × 500 8 

250 × 250 375 × 375 500 × 500 6 

250 × 250 375 × 375 500 × 500 7 

250 × 250 375 × 375 500 × 500 8 

250 × 350 375 × 425 500 × 500 6 

250 × 350 375 × 425 500 × 500 7 

250 × 350 375 × 425 500 × 500 8 

350 × 150 425 × 325 500 × 500 6 

350 × 150 425 × 325 500 × 500 7 

350 × 150 425 × 325 500 × 500 8 

350 × 250 425 × 375 500 × 500 6 

350 × 250 425 × 375 500 × 500 7 

350 × 250 425 × 375 500 × 500 8 

350 × 350 425 × 425 500 × 500 6 

350 × 350 425 × 425 500 × 500 7 

350 × 350 425 × 425 500 × 500 8 



Journal of the Civil Engineering Forum Vol. 5 No. 3 (September 2019) 

 267 

 

Figure 3. Loading and boundary conditions applied to the column

Each column is modelled using shell elements 

with 8 nodes per element. The degree of freedoms 

at each node are translations in 3 directions and 

rotations in 3 directions. In the finite element 

software utilized in this study (ANSYS) the 

element is defined as shell281 and shown in 

Figure 2. Discretization is applied to shell 

element by dividing it into a mesh of finite 

elements. In this study, the maximum size of each 

finite element is 10mm × 10mm. 

The initial imperfection geometry is initial out-

of-straightness of the modelled column before 

non-linear buckling analysis is performed. First 

mode shape of the linear buckling is used as the 

initial imperfection geometry. Therefor linear 

buckling analysis needs to be conducted in 

advance. Mode shape is deformed pattern of the 

members in scale from zero to one. The amplitude 

of the mode shape is value of the maximum scale 

in the mode shape. In this study, the amplitude of 

the mode shape is taken as L/1500. For all cases 

the first buckling mode in linear buckling analysis 

is flexural buckling mode of weak axis.  Typical 

first buckling mode of linear buckling analysis is 

shown in Figure 4. 

 

Figure 4. Typical first buckling mode 
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2 ANALYSIS AND DISCUSSION 

2.1 Model Verification 

Buckling load from finite element analysis (FEA) 

needs to be verified to ensure that all parameters 

in the finite element model is proper. First, 

prismatic column section is modelled to check the 

linear buckling load of prismatic column. 

Dimension of prismatic column, linear buckling 

load from FEA, and Euler’s buckling load Pe is 

shown in Table 6. Table 6 shown that linear 

buckling load of FEA is close to Euler’s buckling 

load, less than 2% of error. Therefore, the 

parameters in the FEA is verified.  

Third, C1 column by Tanakova et al. (2017) as 

shown in Table 2 is remodelled with element type 

and mesh size as mention in Section 1.2, while 

yield stress of the material is 370 MPa according 

to Tanakova et al. (2017). Non-linear buckling 

load obtained from non-linear analysis of the 

remodelled column and buckling load gap to C1 

column by Tanakova et al. (2017) is shown in 

Table 5. Table 5 shows that differential of 

buckling load is -1.83%. Therefor the parameters 

in the FEA is verified. 

Second, buckling load of non-prismatic tapered 

web-and-flange section from FEA and critical 

load of prismatic section computed using AISC 

360-16 for every average slenderness ratio KL/r 

are plotted in Figure 5.  

The average slenderness ratio in the figure means 

slenderness ratio KL/r of prismatic column 

computed using radius of gyration r of the cross 

section using average width and average depth of 

the top and bottom cross sections. Therefore, the 

buckling load of non-prismatic section for any 

average slenderness ratio must be between the 

buckling load of maximum and minimum cross 

sections and this requirement is met as seen in 

Figure 5. Therefore, the parameters in the FEA is 

verified.  

 

Figure 5. Buckling load of upper bound, lower bound, and 
non-prismatic column section 

Table 5. Remodelled and experimental buckling load of C1 column) for verification purpose  

dt 

(mm) 

db 

(mm) 

bt 

(mm) 

bb 

(mm) 

tw 

(mm) 

tf.top 

(mm) 

tf.bot 

(mm) 

L 

(m) 

Pcr 

Experimental 

(kN) 

PcrFEA 

(kN) 

ΔPcr 

(%) 

120 480 100 100 12 12 12 6 1397.6 1372 -1.83 

Table 6. Verification prismatic column to Euler’s Buckling Load  

Cross section (mm) 
 

L (m) Pe (kN) PcrFEAEl  (kN) ΔPcrFEAEL (%) 

150 x 150 x 15 x 18  6 556.92 555.24 -0.30 

500 x 500 x 15 x 18  8 11569 11367 -1.75 

0
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7000
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Table 7. Buckling load PcrFEA and maximum lateral 

displacement max  

bt/bb dt/db λavg 
PcrFEA 

(kN) 

Δmax 

(mm) 

0.3 0.3 74.84 1902 4.2326 

0.3 0.3 87.31 1835 9.1801 

0.3 0.3 99.79 1647 19.926 

0.3 0.5 76.56 2260 6.6275 

0.3 0.5 89.32 2015 13.996 

0.3 0.5 102.09 1701 22.715 

0.3 0.7 78.25 2462 8.93 

0.3 0.7 91.29 2087 14.906 

0.3 0.7 104.33 1736 24.923 

0.5 0.3 63.69 2819 3.1243 

0.5 0.3 74.30 2801 4.9538 

0.5 0.3 84.92 2796 10.978 

0.5 0.5 65.01 3192 3.1282 

0.5 0.5 75.85 3171 7.1753 

0.5 0.5 86.68 2966 15.471 

0.5 0.7 66.31 3559 4.0257 

0.5 0.7 77.36 3423 9.7155 

0.5 0.7 88.41 3073 16.92 

0.7 0.3 55.39 3716 1.9738 

0.7 0.3 64.62 3703 3.5435 

0.7 0.3 73.86 3687 6.4792 

0.7 0.5 56.44 4086 2.2132 

0.7 0.5 65.84 4070 4.2065 

0.7 0.5 75.25 4010 8.3642 

0.7 0.7 57.47 4449 2.4842 

0.7 0.7 67.04 4422 6.6661 

0.7 0.7 76.62 4184 11.485 

2.2 Buckling Load 

FEA in this study shows that flexural buckling of 

weak axis occurs in all tapered web-and-flange 

column sections. FEA is stopped when the non-

prismatic column is not able to withstand any 

additional load. Buckling load of every column is 

displayed in Table 7. According to AL-Shareef 

(2014), larger width and depth ratio has greater 

tapered buckling load capacity. Flexural buckling 

of weak axis depends on moment of inertia of the 

weak axis and width of the section affect the weak 

moment of inertia much more than depth of the 

section. Therefore, width tapered ratio has much 

more effects on buckling load than depth tapered 

ratio and it happens in this study, as excepted. 

Table 8 shows that as width tapered ratio 

increases from 0.3 to 0.7 for every depth tapered 

ratio and column length, the buckling load 

increases between 80.7% to 141.1%. Table 9 

shows that as depth tapered ratio increases from 

0.3 to 0.7 for every width tapered ratio and 

column length, the buckling load increases 

between 5.4% to 29.4%.  

Table 8. Buckling load for increasing tapered-width 

ratio 

bt/bb dt/db L (m) λavg 
PcrFEA 

(kN) 

0.3 0.3 6 74.84 1902 

0.7 0.3 6 55.39 3716 

0.3 0.5 6 76.56 2260 

0.7 0.5 6 56.44 4086 

0.3 0.7 6 78.25 2462 

0.7 0.7 6 57.47 4449 

0.3 0.3 7 87.31 1835 

0.7 0.3 7 64.62 3703 

0.3 0.5 7 89.32 2015 

0.7 0.5 7 65.84 4070 

0.3 0.7 7 91.29 2087 

0.7 0.7 7 67.04 4422 

0.3 0.3 8 99.79 1647 

0.7 0.3 8 73.86 3687 

0.3 0.5 8 102.09 1701 

0.7 0.5 8 75.25 4010 

0.3 0.7 8 104.33 1736 

0.7 0.7 8 76.62 4184 

 

Table 9. Buckling load for increasing tapered-depth 

ratio 

bt/bb dt/db L (m) λavg 
PcrFEA 

(kN) 

0.3 0.3 6 74.84 1902 

0.3 0.7 6 78.25 2462 

0.5 0.3 6 63.69 2819 

0.5 0.7 6 66.31 3559 

0.7 0.3 6 55.36 3716 

0.7 0.7 6 57.47 4449 

0.3 0.3 7 87.31 1835 

0.3 0.7 7 91.29 2087 

0.5 0.3 7 74.30 2801 

0.5 0.7 7 77.36 3423 

0.7 0.3 7 64.62 3703 

0.7 0.7 7 67.04 4422 

0.3 0.3 8 99.79 1647 

0.3 0.7 8 104.33 1736 

0.5 0.3 8 84.92 2796 

0.5 0.7 8 88.41 3073 

0.7 0.3 8 73.86 3687 

0.7 0.7 8 76.62 4184 
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2.3 Lateral Deflection 

Width tapered ratio, depth tapered ratio, and 

column length govern the slenderness ratio of the 

column. Column with large width tapered ratio 

has smaller slenderness ratio. Column with large 

depth tapered ratio has larger slenderness ratio. 

Short column has smaller slenderness ratio. 

Slenderness ratio of the column determines not 

only the buckling load but also the lateral 

deflection of the column during buckling. Slender 

column tends to deflect more easily than stocky 

column. FEA results in this study show that 

column with larger slenderness ratio has larger 

lateral deflection, as shown in Table 7. 

2.4 Rigidity 

Rigidity of non-prismatic columns can be 

observed from the slope of the gradient of axial 

load versus lateral displacement curve. To 

analyse rigidity of the column, axial load versus 

lateral displacement curve for every column 

length is plotted in Figure 6, 7, and 8. As seen in 

those figures, column with larger buckling load 

has smaller lateral displacement and larger 

rigidity. Increasing width tapered ratio increases 

column rigidity significantly. On the other hand, 

increasing depth tapered ratio only slightly 

increases rigidity of the column.  This is because 

flexural buckling happens in the weak axis and 

depth tapered ratio does not affect significantly 

moment of inertia in that direction. 

 

Figure 6. Axial load versus lateral displacement curves for L 
= 6 m 

 

 

Figure 7. Axial load versus lateral displacement curves for L 
= 7m 

 

 
 
Figure 8. Axial load versus lateral displacement curves for L 
= 8 m 

Length of the column also affects its rigidity.  To 

analyse rigidity of the column in terms of column 

length, axial load versus lateral displacement 

curve of every column with different length is 

plotted in Figure 9, 10, and 11. Clearly, column 

with larger width tapered ratio, smaller depth 

tapered ratio, and shorter length has greater 

rigidity. 
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2.5 Buckling Load Equation 

One of the purposes of this study is to seek a 

multiplier that can be applied to buckling load of 

prismatic column to obtain the buckling load of a 

non-prismatic column. The buckling load of the 

prismatic section is obtained from Chapter E of 

AISC 360-16 using average cross section with the 

same length and boundary conditions as the 

corresponding non-prismatic column.  

 
 
Figure 9. Axial load versus lateral displacement curves for 
bt/bb=0.3 

 

 

Figure 10. Axial load versus lateral displacement curves for 
bt/bb=0.5 

 

Figure 11. Axial load lateral displacement curves for 
bt/bb=0.7 

The multiplier proposed in this study depends on 

three variables, namely the depth tapered ratio 

dt/db, width tapered ratio bt/bb, and slenderness 

ratio λavg of the prismatic section as shown in 

Table 10. The equation that uses those three 

variables to obtain the multiplier is obtained 

using stepwise regression of the finite element 

results with the coefficient of determination of 

95.76% as Equation (13), (14) and (15). 

PcrFEA

Pcravg
= 0.2752+2.1

bt

bb
+0.21

dt

db
  

-1.215
bt

2

bb
2 -16.50

1

λavg
 (13) 

Cnp= 
PcrFEA

Pcravg
 (14) 

Pcrnp=PcravgCnp  (15) 

Where λavg  is slenderness ratio of prismatic 

column section, Pcravg is buckling load of prismatic 

column section, PcrFEA is buckling load of the 

corresponding non-prismatic column, and Cnp is 

the multiplier proposed. 

In Equation (13), the factor of width tapered ratio 

bt/bb is as much as ten times the factor of depth 

tapered ratio dt/db. This signifies the conclusion 

that width tapered ratio has much more effect on 

buckling load compared to depth tapered ratio. 
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The ratio of buckling load of non-prismatic 

column from FEA to the buckling load of the 

corresponding prismatic column section is 

defined as Cnp in Equation (14). Therefore, 

buckling load of general non-prismatic column 

section can be obtained by multiplying Cnp to 

buckling load of the corresponding prismatic 

column section using average cross section 

(average width and average depth) as shown in 

Equation (15). 

Table 10. Stepwise regression variables  

bt/bb dt/db 1/λavg 
PcrFEA 

(kN) 

Pcravg 

(kN) 

PcrFEA/

Pcravg 

0.3 0.3 0.0134 1902 2979.0 0.64 

0.3 0.3 0.0115 1835 2676.1 0.69 

0.3 0.3 0.0100 1647 2364.7 0.70 

0.3 0.5 0.0131 2260 3075.4 0.73 

0.3 0.5 0.0112 2015 2749.0 0.73 

0.3 0.5 0.0098 1701 2415.1 0.70 

0.3 0.7 0.0128 2462 3168.7 0.78 

0.3 0.7 0.0110 2087 2818.2 0.74 

0.3 0.7 0.0096 1736 2461.7 0.71 

0.5 0.3 0.0157 2819 3596.1 0.78 

0.5 0.3 0.0135 2801 3327.4 0.84 

0.5 0.3 0.0118 2796 3042.2 0.92 

0.5 0.5 0.0154 3192 3713.63 0.86 

0.5 0.5 0.0132 3171 3425.00 0.93 

0.5 0.5 0.0115 2966 3119.74 0.95 

0.5 0.7 0.0151 3559 3828.80 0.93 

0.5 0.7 0.0129 3423 3519.74 0.97 

0.5 0.7 0.0113 3073 3194.00 0.96 

0.7 0.3 0.0181 3716 4171.90 0.89 

0.7 0.3 0.0155 3703 3933.92 0.94 

0.7 0.3 0.0135 3687 3676.15 1.00 

0.7 0.5 0.0177 4086 4304.47 0.95 

0.7 0.5 0.0152 4070 4049.85 1.00 

0.7 0.5 0.0133 4010 3774.72 1.06 

0.7 0.7 0.0174 4449 4435.25 1.00 

0.7 0.7 0.0149 4422 4163.56 1.06 

0.7 0.7 0.0131 4184 3870.69 1.08 

3 CONCLUSIONS 

This study shows that buckling load of non-

prismatic I-section depends on the width tapered 

ratio of both ends, the depth tapered ratio of both 

ends, and the average slenderness ratio. Larger 

width   tapered   ratio  of   both  ends   has   larger  

 

buckling load and the column become more rigid 

but less ductile. As width tapered ratio increases 

from 0.3 to 0.7, the buckling load increases 

between 84.7% to 141.1%. Larger depth tapered 

ratio of both ends has larger buckling load but 

neither rigidity nor ductility is affected. As the 

depth tapered ratio of both ends increases from 

0.3 to 0.7, buckling load increases between 5.4% 

to 29.4%. Larger average slenderness ratio has 

smaller buckling load and the column becomes 

more ductile.  

This study proposed a multiplier Cnp that can be 

applied to buckling load of prismatic column to 

obtain buckling load of corresponding non-

prismatic section. The prismatic column is a 

column with the average width and depth of the 

non-prismatic column.  The multiplier depends 

on the width tapered ratio, depth tapered ratio, 

and slenderness ratio of the column. Although it 

is unusual to derive an equation from the 

analytical result, hence experimental result is 

usually used, because of there is no experimental 

result yet, regression of FEA result is conducted 

to produce Cnp. Therefore, further study especially 

experimental study is needed to verify the 

proposed Cnp and also to achieve more accurate 

and reliable result of Cnp.  

It should be noted that the proposed multiplier 

Cnp was developed for the depth ratio between 0.3 

to 0.7, width tapered tapered ratio between 0.3 to 

0.7, and slenderness ratio between 55.39 to 

104.33. Therefore, the use of the equation to 

compute Cnp for any value of those variables 

outside these ranges needs further verifications.  

Consideration of residual stress, other type of 

buckling, and another boundary conditions are 

interesting aspects for further study of axially 

loaded non-prismatic I-sections. 
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