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ABSTRACT 

Geotube is, among others, a type of coastal structure that is increasingly accepted for coastal 
protection especially underwater breakwater. Besides its relatively low cost, it has other advantages 
such as flexibility, ease of construction and the fact that it can be filled with local sand material. 
Similar to all other coastal structures, it should also be stable under wave attack. A simple theoretical 
approach based on linear wave was adopted to estimate the stability of such structure. The theoretical 
solution was then compared with an experimental study. The experimental study was conducted at the 
Hydraulics and Hydrology Laboratory of Universitas Gadjah Mada. However, instead of a real 
geotube, PVC pipe was used where the weight of the PVC was varied by adjusting the volume of sand 
in the pipe. The result indicated that the agreement between the theoretical solution and the 
experiment was encouraging. The analytical solution may be utilized to predict underwater pipe 
stability under wave attack with certain degree of accuracy. 

Keywords: Geotube, initial movement, submerged structure. 
 

INTRODUCTION 

Geotube is a type of coastal structure which can 
be used as coastal protection. Basically geotube is 
a geosyntetic type of material which is stitched to 
form a tube when filled with sand or cement 
material. 

Geotube can be used as groin, jetty, or even 
breakwater as long as the material is strong 
enough against debris or sunlight. The advantage 
of geotube is its flexibility size as normally the 
size of geotextile is almost unlimited when 
stitched to one another. It is also lightweight 
which makes transportation easy. There are other 
economic advantages that make the structure 
increasingly acceptable. 

 

 

When used as a breakwater it has to be strong 
enough to withstand wave force and current 
(Pilarczyk, 1998, 2000). For this reason, the 
paper discusses the stability of geotube 
underwater breakwater.  

Researches related to geotube as a coastal 
structure have been carried out by many such as 
Shin E.C, and Oh Y.I. (2007) who studied the 
stability of Geotube based on two-dimensional 
physical model. Paotonan et al (2011) analyzed 
the geotube stability under sinusoidal wave 
attack. 

The use of geotube as coastal protection has been 
realized in many parts of Indonesia and other 
countries. El Dorado Royale Resor, Mexico is 
one of the examples. 
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Therefore, the non-dimensional parameters 
relevant to the initial motion of the geotube are 

H/D, 1

s  and 

D

hs

 
Equation 16 will be used to 

calculate minimum wave height needed for the 
structure to start moving. 

E. Physical Model Simulation 

The experimental study was conducted in a 
regular wave flume of 30 cm wide. PVC pipes of 
different sizes that were closed at both ends were 
used as geotube models. In order to vary the 
weight of the model and hence its overall density, 
the pipes were filled with water and sand of 
different volumes. The diameter of the pipes was 
13.02 cm (model I), 11.02 cm (model II) and 
8.374 cm (Model III). The models are shown in 
Figure 3.  

 

 

Figure 3. Model of geotubes 

Each model was tested under sinusoidal waves 
attack. The test was initiated using small wave 
amplitudes and was increased at small increment 
to observe the initial motion of the geotube 
models that indicate instability. The wave heights 
were measured using wave probes. The geotube 
model during the test is shown in Figure 4. 

 

Figure 4. Testing models in the wave flume 

The models were run for all (three geotubes) 
models. The results, together with the analytical 
approach, were given in the next section.  

RESULTS AND DISCUSSION 

The results of the experimental work are given in 
Table 1 and Figure 5. It can be seen that the 
agreement between the theoretical and the 
experimental data is encouraging. However, the 
real friction coefficient has to be determined for 
better comparison. In this study, the friction 
coefficients was tried and the best fit was chosen. 
Hence, with such value of f (the best fit) only a 
trend comparison between the experiment and the 
theoretical solution can be made. The final trial 
indicated that f = 0.00546 produced the best fit. 

 

 

Figure 5. Theoretical vs Experimental wave height required 
for geotube models initial motion 

( f = 0.00546; CD = 2.200 and CL = 4.489) 
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Table 1. Experimental and theoretical minimum wave height for geotubes model stabilization 

Model 
Specification 

m 
(kg) 

V 
(m3) 

ρs 

(kg/m3) 
D 

(m) 
hs 

(m) 
H 

(experiment, m) 

H 
(theoretical, m) 

with   f = 0.00546 
(-) 

I 
100% of 
water 

4.516 0.004 1.2600 0.130 0.250 0.0110 0.0110 
4.516 0.004 1.2600 0.130 0.250 0.0110 0.0110 
4.516 0.004 1.2600 0.130 0.250 0.0110 0.0110 
4.516 0.004 1.2600 0.130 0.250 0.0110 0.0110 

II 

100% of 
water 

2.965 0.003 1.2600 0.110 0.250 0.0110 0.0110 
2.965 0.003 1.2600 0.110 0.250 0.0110 0.0110 
2.965 0.003 1.2600 0.110 0.250 0.0100 0.0110 
2.965 0.003 1.2600 0.110 0.250 0.0100 0.0110 

75% of 
dry sand 

3.481 0.003 1.3660 0.110 0.250 0.0130 0.0120 
3.481 0.003 1.3660 0.110 0.250 0.0120 0.0120 
3.481 0.003 1.3660 0.110 0.250 0.0120 0.0120 
3.481 0.003 1.3660 0.110 0.250 0.0120 0.0120 

100% of 
dry sand 

4.627 0.003 1.8170 0.110 0.250 0.0180 0.0190 
4.627 0.003 1.8170 0.110 0.250 0.0190 0.0190 
4.627 0.003 1.8170 0.110 0.250 0.0180 0.0190 
4.627 0.003 1.8170 0.110 0.250 0.0190 0.0190 

100% of 
wet sand 

5.605 0.003 2.2000 0.110 0.250 0.0220 0.0230 
5.605 0.003 2.2000 0.110 0.250 0.0220 0.0230 
5.605 0.003 2.2000 0.110 0.250 0.0220 0.0230 
5.605 0.003 2.2000 0.110 0.250 0.0230 0.0230 

III 
100% of 
water 

1.845 0.001 1.2600 0.0840 0.250 0.0090 0.0090 
1.845 0.001 1.2600 0.0840 0.250 0.0090 0.0090 
1.845 0.001 1.2600 0.0840 0.250 0.0090 0.0090 
1.845 0.001 1.2600 0.0840 0.250 0.0090 0.0090 

 

Figure 5 shows that the trend of the experimental 
wave heights that agree with the theoretical 
solution. Using regression technique a fitting 
curve as in Figure 5 indicates a slope of unity, 
showing the best fit of the f value and indicates 
the agreement of the experimental and theoretical 
data trend. The parameter for the best agreement 
was 0.00546; 2.200, and 4.493 for f, CD, and CL 
respectively at the initial movement of a 
submerged coastal structure. In terms of non 
dimensional parameter, the results of the 
experiment may be compared with the theoretical 
solution in Figure 6 and Figure 7.  

Figure 6 shows that increasing value of (ρs/ρ-1) 
causes the increasing value of H/D, which means 
that when the value of specific gravity of 
structure increases, the wave height required to 
stir the structure is greater. If the geotube specific 
gravity and the water depth are constant, the 

effect of water depth and geotube diameter ratio 
on H/D can be obtained. The influence of hs/D on 
H/D for a constant ρs/ρ can be seen in Figure 7. 
 

 
Figure 6. Relationship between ρs/ρ-1 and H/D 
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Figure 7. Relationship between hs/D and H/D 

Again, Figure 7 shows that the trend between the 
measurements in the laboratory and the 
theoretical calculation is similar. The increasing 
value of hs/D causes the increasing H/D value. 
Using Equation16 the combination of non 
dimensional parameter that affects H/D is 

D

hss








1




 where the correlation is indicated in 

Figure 8. The line and scatter point in the Figure 
are theoretical line and data experiment, 
respectively. 

 
Figure 8. The combinative effects of ρs/ρ-1 and hs/D  

on H/D 

Figure 8 shows the increasing value of (ρs/ρ-
1)(hs/D) causes the increasing values of H/D. 
Theoretical value of H/D on Figures 5 to 8, were 
calculated by assuming that f, CD, and CL values 
were 0.00546;  2.200 and 4.498 respectively. 
Using Equation 17, H/D values as a function of 
geotube specific gravity and ratio of depth water 
to geotube diameter can be calculated where the 
result is presented in Figure 9. 

 

Figure 9. Geotube Initial movement graph 

Using Figure 9, the initial movement of 
submerged structure can be predicted. A situation 
that is represented by a point located above of the 
curve of Figure 9 is unstable and vice versa.  
Suppose a geotube under wave attack of (ρs/ρ-
1)(hs/D) = 5.0 and H/D = 0.4 it indicates that the 
structure is theoretically unstable while a geotube 
of (ρs/ρ-1)(hs/D) = 5.0 and H/D = 0.1 is 
theoretically settled.  

CONCLUSIONS 

Based on the explanation above, it can be 
concluded into some points below. Firstly, the 
stability of a submerged structure is influenced by 
wave parameters (height and water depth) and 
structure parameters; those are the specific 
gravity and the diameter of structure, D. 
Secondly, the wave height trend which is able to 
move the structure obtained from experimental 
data and calculation with Equation 15 are equal. 
Thirdly, as the value of structure specific gravity 
increases, the wave height which is needed to 
move the structure is increasing too. Or in other 
words as the specific gravity of structure 
increases, the structure is more stable as well. 
Fourthly, if the value of water depth and structure 
diameter is getting greater, the effect on wave 
height and structure diameter ratio is getting 
greater and follows the logarithmic trend. 
Combination of non-dimensional parameter 
which influences the ratio of wave height value 
and structure diameter is (ρs/ρ-1)(hs/D). As the 
value of (ρs/ρ-1)(hs/D) increases, the value of H/D 
increases too. The initial movement of geotube 
can be predicted by using Equation 17 or Figure 
9. 
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