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ABSTRACT. Global coal production and demand have increased annually increased. In
addition to its potential as an alternative source of critical elements, coal also has en-
vironmental risks through toxicology elements. Australia is the world’s second-largest
producer of Rare Earth Elements (REEs) and critical elements, making coal exploration
a key focus of the country’s mining strategy. Unsupervised Machine learning algorithm
(CCA, PCC, PCA, two-ways HCA) and was applied to 56 coal samples from three pits in
Bowen Basin, e.g., Blake Central Pit, Blake West Pit, and Bowen No. 2 Pit, to correlate
trace elements with the geochemical characteristics of coal, such as proximate and major
oxides. These methods are aimed at finding the factors that control the geochemistry of
coal in the study area, especially to characterize the coal based on its potential valuable
and toxic elements and determining the trend of element distribution (IDW). Blake West
Pit is enriched in Ba, Br, and Sr, which associated with inherent moisture and phosphor
(P), extending SE-trend. Blake Central Pit and Blake West Pit are enriched in Hf, Mo, Ta,
Th, Y, and REY, which are associated with ash and major elements such as Si, Al, Ti, and
K, with a trend of potential exploration towards N-NW. However, both pits show the risk
of contamination from the toxic element Zn, which is associated with volatile matter, and
major elements e.g., Fe, Mg, and Mn, with a trend of distribution towards S-SW. Corre-
lation analysis and regional geology, suggest trace element enrichment in Bowen Basin
is controlled by two main factors: 1) the transgressive phase during Early-Late Permian,
which enriched inherent moisture, P, Ba, Br, and Sr, and 2) volcanic activity during Early
Permian, which enriched silicate minerals and elements such as Hf, Ta, Th, W, and REY.
Unsupervised machine learning has proven effective for preliminary coal characterization
to support further exploration, such as identifying the sources of elements and the geo-
logical factors that control the coal characteristics. The results were obtained from PCC
(to find correlations between each pair of variables), PCA (to identify the components that
contribute to the correlations), and two-way HCA (to characterize coal based on variable
values and sample location).
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1 INTRODUCTION

Coal as an alternative source for non-
conventional elements such as critical elements,
has shown a consistent increase in production
and global demand annually (Hu et al., 2021).
However, the use of coal is still associated with
negative health impacts, including endemic
diseases such as fluorosis, arsenosis, selenosis,
and lung cancer, caused by toxic elements like
arsenic (As), cobalt (Co), chromium (Cr), nickel
(Ni), selenium (Se), and zinc (Zn) found in coal
composition (Dai et al., 2012).

Australia, as the world’s second-largest pro-
ducer of Rare Earth Elements (REEs) and crit-
ical elements, has identified 24 elements as
critical, focusing on these in exploration activ-
ities (Queensland Government-Department of
Resources, 2021). Coal exploration, particularly
in Queensland’s Bowen Basin, extending from
Collinsville to New South Wales, plays a key
role in the country’s mining strategy and pol-
icy. Bowen Basin not only produces coal for
metallurgical and thermal purposes, but also
exhibits significant variations in characteristics,
age, and geological conditions (Queensland
Government-Department of Resources, 2021).

However, to date, in-depth studies on the re-
lationship between valuable elements and toxi-
cological elements with characteristics and dis-
tribution of coal remain limited. Thus, this
study aims to identify the geochemical char-
acteristics of coal through the use of Unsuper-
vised Machine Learning. Therefore, this study
aims to investigate the geochemical character-
istics of coal in the Bowen Basin by applying
unsupervised machine learning. The goal is to
identify the controlling factors and spatial dis-
tribution of both valuable and toxic elements
in the coal. Additionally, spatial distribution
patterns of these geochemical characteristics, as
well as geological modelling to generate tar-
geted exploration areas. Such a context, preven-
tive strategy advice to address environmental
impacts around the Bowen Basin, Australia and
to support more sustainable coal resource man-
agement as well as minimizing negative envi-
ronmental impacts. Such a context highlights
the need for providing preventive strategic rec-
ommendations to address environmental im-
pacts in the Bowen Basin, Australia. The find-
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ings of this study are expected to support more
sustainable coal resource management and con-
tribute to the mitigation of negative environ-
mental effects in the region.

2 GEOLOGICAL BACKGROUND

The Bowen Basin is located in Queensland,
Australia (Figure 1), with a complex geological
history. This basin contains sediments from the
Permian to Triassic periods, with thicknesses
reaching up to 9,000 meters in certain locations,
such as the Taroom and Denison Troughs (Fig-
ure 2). Intense tectonic activity has created
various geological features, including the Daw-
son Fold Zone, Nebo Syncline, and several ma-
jor faults such as the Hutton-Wallumbilla Fault.
Sedimentation in this basin began in the Early
Permian, characterized by fluvial, lacustrine de-
posits, and coal cycles. Deposition continued
until the Late Triassic. In the Late Permian, tec-
tonic loading accelerated the deposition of thick
marine sediments, which are highly significant
for Coal Seam Gas (CSG) exploration. The fi-
nal stage of deposition occurred in the Late
Triassic, followed by extensive erosion, paving
the way for sedimentation from the Surat Basin
(Queensland Government et al., 2021).

The formation environment of the Blake
Seam is in a swampy area with a high ash con-
tent, low sulphur content (Blake West 0.24%,
Blake Central 0.6%), and minimal sulphide
minerals such as pyrite. Based on previous
sedimentological studies, the Blake Seam is
interpreted as a result of fluvial deposition
(Martini and Johnson, 1987). Meanwhile, the
Bowen Seam has a lower ash yield compared
to the Blake Seam, indicating a lower min-
eral content. Additionally, this seam exhibits
higher sulfur content, particularly in proximity
to the intrusive body, when compared to the
Blake Seam. From a depositional environment
perspective, the Bowen Seam formed under
conditions similar to a swamp environment,
where repeated cycles of drying and oxidation
occurred (Brakel ef al., 2009). The absence of
sedimentary rock layers indicates that no sig-
nificant sedimentation processes took place,
supporting the conclusion that the coal in this
seam has a lower mineral content. The lack
of sedimentary rock layers in this section in-
dicates limited depositional activity, which is
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FIGURE 1.
Queensland (Brakel et al., 2009).

Location map of the Bowen Basin in

potentially linked to the lower mineral content
identified in the associated coal seam.

3 RELEVANT THEORY

3.1 Valuable and toxicology elements in coal

Coal is utilized as an alternative source for
critical elements (Seredin and Dai, 2012),
with some elements considered critical such
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as neodymium (Nd), terbium (Tb), dyspro-
sium (Dy), yttrium (Y), europium (Eu), and
erbium (Er). In contrast, elements like lan-
thanum (La), praseodymium (Pr), samarium
(Sm), and gadolinium (Gd) are considered non-
critical, while elements such as cerium (Ce),
holmium (Ho), thulium (Tm), ytterbium (Yb),
and lutetium (Lu) are deemed excessive. One
country advancing coal as a source of both con-
ventional and non-conventional resources is
Australia, the world’s second-largest producer
of Rare Earth Elements (REE). According to
Australia’s 2019 policy, the strategy to meet the
demand for critical elements is supported by
coal extraction.

With the increasing scarcity and high de-
mand for critical metals, coal has emerged as
a potential source for these elements. Histori-
cally, uranium was extracted from coal, and cur-
rently, germanium, selenium, and vanadium
are mined from coal ash. Pilot plants and lab-
oratory technologies have been developed for
the extraction of gallium, aluminum, and rare
earth elements, among others. Coal ash also
holds promise as a source of valuable elements
such as PGE, gold, silver, lithium, and others,
with significant potential for various applica-
tions (Dai & Finkelman, 2018).

The extraction of elements from coal can pro-
vide benefits in terms of resources, economy,
and the environment (Hu et al., 2021). How-
ever, it has been noted that health hazards from
exposure to coal dust, which is rich in elements
that can be harmful to human health, are signif-
icant (Dai et al., 2012). The ash produced from
coal combustion can lead to diseases such as en-
demic fluorosis, arsenosis, selenosis, and lung
cancer. The toxicology elements in coal present
include As, Se, F, Co, Cr, Cu, Zn, V, and Ni (Dai
et al., 2012). According to World Health Orga-
nization (WHO) guidelines, the toxic threshold
limits for drinking water are as follows: As -
0.01 ppm, Se - 0.04 ppm, F - 1.5 ppm, Co - 2
ppm, Cr - 0.05 ppm, Cu - 2 ppm, Zn - 3 ppm,
and Ni - 0.07 ppm.

3.2 Evaluation Concentration

The utilization prospect of Rare Earth Elements
and Yttrium (REY) in coal and coal ash can be
assessed through several parameters, including
metal resource potential, extraction rate, envi-
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FIGURE 2. Stratigraphy of the Bowen Basin (Brakel et al., 2009).

ronmental and human health impact, and ra-
dioactive properties that influence these aspects
(Seredin and Dai, 2012). The evaluation of el-
ement concentration in coal can be performed
using the Concentration Coefficient (CC). The
CC represents the ratio of the element’s con-
centration in the investigated coal to its aver-
age concentration in world hard coals. Based
on this CC value (Dai et al., 2015), the enrich-
ment level of an element can be classified into
six categories: depleted (CC < 0.5), normal (0.5
< CC < 2), slightly enriched (2 < CC < 5), en-
riched (5 < CC < 10), significantly enriched (10
< CC < 100), and anomalously enriched (CC >
100).

3.3 Unsupervised Machine Learning

Unsupervised learning is a type of machine
learning where the algorithm learns from un-
labeled data without any predefined outputs or
target variables. This means that the data does
not have any pre-existing labels or categories.
The goal of unsupervised learning is to discover
patterns and relationships in the data without
any explicit guidance. It involves training a ma-
chine using information that is neither classi-
fied nor labeled, allowing the algorithm to act
on that information without guidance (Wuet al.,
2021).
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Unsupervised machine learning includes
various techniques for discovering patterns and
structures in data without predefined labels.
Key methods include clustering (e.g., K-Means,
DBSCAN, Hierarchical Clustering), dimen-
sionality reduction (e.g., PCA, t-SNE, Autoen-
coders), and Canonical Correlation Analysis
(CCA), which explores relationships between
two sets of variables. Other techniques such as
association rule learning, anomaly detection,
Self-Organizing Maps (SOMs), and generative
models (e.g., GANs, VAEs) are used for pat-
tern recognition, anomaly identification, and
generating new data (Usama et al., 2019).

4 METHODOLOGY

The methodology consists of eight steps, initi-
ated by data collection, followed by data clean-
ing (eliminating non-significant values), data
pre-processing (standardizing the data), four
separate machine learning analyses, and a fi-
nal step involving spatial distribution analysis
using Inverse Distance Weighting (IDW). While
each individual machine learning method is ca-
pable of providing correlations, this study inte-
grated four different approaches to obtain more
meaningful insights. The workflow is summa-
rized in Figure 3.

Journal of Applied Geology
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4.1 Dataset

Data used in this study include trace ele-
ments and geochemical parameters of coal
from “Trace Elements in Coal from Collinsville,
Bowen Basin, Australia — in-Ground Mode of
Occurrence and Behaviour During Utilisation”
by Boyd (2004). The dataset consists of a total of
57 samples, comprising 24 from Blake Central
Pit, 27 from Blake West Pit, and 5 from Bowen
No. 2 Pit (Figure 4). The samples from each pit
were vertically distributed and collected using
ply-by-ply sampling method.

The data were categorized into four datasets
(parameter): proximate, major oxides, and two
groups of trace elements—classified as toxico-
logical and valuable elements. Proximate pa-
rameters consist of 4 for aspects i.e., ash, fixed
carbon, inherent moisture, and volatile matter.
Major oxides include 11 elements as its vari-
ables, i.e., Si, Al, FeA (for Fe;O,), FeB (for FeO),
Ca, Mg, Na, K, Ti, Mn, and P. While, the trace
elements consisting of six toxicology elements,
i.e., As, Co, Cr, Ni, Se, Zn (Dai et al., 2012) and
15 valuable elements include i.e., Au, Ba, Br, Cs,

Journal of Applied Geology

Hf, Hg, Mo, Rb, Sb, Sr, Ta, Th, U, W, Yb and
total REY.

4.2

Data cleaning aimed to eliminate variables be-
fore entering the main data process. This step
eliminates some trace element variables that are
concentrated below the world’s average of trace
elements in brown coal (Ketris and Yudovich,
2009), i.e., Au, Cs, Hg, Sb, U, and As. Ca as a
trace element with concentration below the de-
tection limit are also eliminated. Therefore, the
elements included in the discussion are:

Data cleaning

e Valuable elements: Ba, Br, Hf, Mo, Rb,
REY, Sr, Ta, Th, and U

¢ Toxic elements: Co, Cr, Ni, Se, and Zn
* Major oxides: Al, FeA, FeB, K, Mg, Mn,
Na, P, Si, dan Ti

In addition, all variables from the proximate
analysis are included in the next step of the
analysis.

Outlier identification is also included as one
of data cleaning techniques to avoid outlier

29
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skewing in CCA estimation (Wang et al., 2020;
Gelman and Hill, 2007) and recognising the
anomalous value of the variables.

4.3 Data pre-processing

Main data processing through machine learn-
ing algorithms includes four separate analyses.
Data pre-processing is needed in some of the
analyses. The Z-score is defined for each vari-
able to enhance domain interpretability before
performing CCA (Wang et al., 2020) (Figure 5)
and HCA (Jiang et al., 2015). Standardization
with z-score is used to eliminate the impact of
differences in numerical feature scales which
transform feature X into standardized value Z
(Li et al., 2024).

(1)
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Where y is mean of the data and ¢ is standard
deviation of feature X.

4.4 Canonical correlation analysis (CCA)

Canonical Correlation Analysis (CCA) was first
introduced by Hotelling (1936). CCA is a sta-
tistical method aimed at determining the max-
imum correlation between two sets of data
(multidimensional variables) (Abdi et al., 2018).
One common way to visualize CCA results
is through a scatter plot with a trendline and
the R2 value (Canonical Correlation Coefficient)
(Figure 6). The CCA value ranges from 0 to 1,
where 0 indicates no relationship between the
two data sets, while 1 indicates a perfect rela-
tionship between the data sets.

The use of this method aims to compare each
pair of parameter groups, providing a general
overview of the relationships between the anal-
ysed parameters before conducting a more in-
depth correlation analysis. However, Canonical
Correlation Analysis (CCA) can only demon-
strate the relationship between the parameters
as a whole, making it unable to reveal the re-
lationships of individual variables within those
parameters.

4.5 Pearson correlation coefficient (PCC)

The Pearson Correlation Coefficient (PCC) is a
statistical method used to measure the linear
correlation between two data variables. There
are three types of correlation that PCC can indi-
cate: 1) Negative correlation (-1 < R < 0); 2) No
correlation (R = 0); and 3) Positive correlation (0
<R<1).

PCC can be visualized in various diagrams,
one of which is the heatmap. This visualiza-
tion is also used in Li et al. (2024) and Xia et al.
(2023). This diagram presents the PCC values
(r) using a color scale. Negative correlations are
represented by red, while positive correlations
are shown in blue. The stronger the correlation,
the more intense the color displayed. PCC (r)
value calculated from equation below.

o nExy — (Zx)(Zy)
Tz — (202 — iy — ()

)

Where:

Journal of Applied Geology
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ryy = pearson correlation coefficient

n = number of sample

Yxy =sum of the cross-products of each pair
values

Yx  =sum of the x values

Yy  =sum of the y values

Yx? = sum of the squared x values

Ty?

This method is used after determining the
correlation relationships between parameter
groups to review the correlation of each vari-
able within those parameters. However, the
Pearson Correlation Coefficient (PCC) can only
indicate the relationships between variables
within each parameter and cannot represent
the distribution of samples that affect these
relationships.

= sum of the squared y values

4.6 Principal component analysis (PCA)

Principal Component Analysis (PCA) is a mul-
tivariate statistical analysis method used to
identify correlations between datasets which
was developed by Hotelling (1933). The princi-
ple of PCA is to simplify the data structure by
reducing its dimensionality (Jiang et al., 2015).
The original parameters are then re-organized
into several comprehensive, uncorrelated fac-
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tors, without losing significant information
(Jiang et al., 2015; Brown and Brown, 1998).
In addition to showing correlations, Principal
Component Analysis (PCA) also exhibits the
distribution of sample groups, allowing for
sample identification and controlled parame-
ters.

4.7 Heatmap — two ways hierarchical cluster-
ing analysis (HCA)

Hierarchical Clustering Analysis (HCA) is a sta-
tistical method for grouping data based on sim-
ilarity of samples and variables. One effective
way to visualize HCA results is by combining
a heatmap and a dendrogram as a two-way hi-
erarchical clustering as used in Ma et al. (2020).
The heatmap displays the values or concentra-
tions of each variable represented by z-score,
while the dendrogram illustrates the data clus-
ters based on the similarity of analyzed vari-
ables.

The objective of clustering is to identify
groups of data points based on their similar-
ities and to determine the samples associated
with each group.
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4.8 Inverse-distance weighting (IDW)

The Inverse-Distance Weighting (IDW) method,
as described by Wong (2017), is a widely used
spatial interpolation technique in Geographic
Information System (GIS) that estimates values
at unmeasured locations by using the spatial
dependence of neighbouring data points. The
weight A; assigned to each sampled point s; is
inversely proportional to its distance d;p from
the unsampled location sy, raised to a power de-
fined by the distance-decay parameter x. The
predicted value d(s) is calculated as:

a(so) = Xn:)\ia(si) 3)

Where:

Ai= o — 4
(=T aw (4)

Here, a(s;) represents the observed value at
sampled location s;, and 7 is the number of sam-
pled points included in the calculation. The
parameter a controls the rate of distance-decay:
higher a values prioritize nearby points, while
lower values allow distant points to contribute
more. IDW is an exact interpolator, ensuring
a(s;) = a(s;) at sampled locations.

The accuracy of IDW depends on two key pa-
rameters: « and the neighbourhood size. Neigh-
bourhoods can be defined by a fixed radius
around sy or by selecting the k-nearest sam-
pled points. Smaller neighborhoods or higher
« values produce localized estimates sensitive
to nearby variations, whereas larger neighbour-
hoods or lower a values yield smoother sur-
faces by incorporating more distant observa-
tions. The method assumes spatial autocorrela-
tion, where closer locations exhibit greater simi-
larity, but cannot extrapolate beyond the spatial
range of sampled data (Wong, 2017).

5 RESULT AND DISCUSSION

Based on the studies conducted by Ketris and
Yudovich (2009) and Dai (2012), the data used
for further analysis were classified into sev-
eral main groups based on their characteristics,
namely proximate data, major elements, and
trace elements. A summary of the data used is
presented in Figure 6.
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TABLE 1. Data excluded from the analysis.

Criteria Parameters

Values below the Ca

detection limit

Values below the global Au, Cs, Hg, Sb, U, As

coal standard

However, not all data were used in the anal-
ysis. Data were excluded if they fell below
the instrument’s detection limit or were consid-
ered depleted relative to global coal standards,
which is defined by a concentration coefficient
(cc) value of less than 1. The dataset is summa-
rized in Table 1.

Proximate data were used to understand the
physical and chemical properties and its asso-
ciation to major and trace elements, in terms
of toxicological-valuable elements abundances
and geological control.

Valuable elements, such as REY, Sr, and W,
highlight their potential for technological or in-
dustrial applications. Conversely, toxicology el-
ements such as Co, Cr, and Zn were analyzed
to evaluate their potential environmental im-
pacts. Data excluded from the analysis, such
as Ca, Au, Cs, and others, were disregarded as
they were deemed analytically insignificant in
the context of this study.

5.1 Data correlation and dimensionality re-
duction

511 CCA

Based on the results of the correlation analy-
sis between parameters using Canonical Cor-
relation Analysis (CCA) as shown in Figure 7,
the relationships between different parameter
groups were categorized as either strong or
weak correlations (Table 2).

A strong correlation observed between proxi-
mate parameters, major oxides, and valuable el-
ements indicate significant interdependence in
their geochemical characteristics. For instance,
the relationship between proximate parameters
and major oxides may reflect the mineralogical
influences on the physical properties of the ma-
terial, while the association with valuable ele-
ments highlights their potential co-occurrence
in industrially valuable compounds.

Conversely, the weak correlations between

Journal of Applied Geology
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values falling below the instrument’s detection limit, or (2) values considered depleted, as defined by a
concentration coefficient (cc) of less than 1. The classification of trace elements into valuable and toxicology
groups is adapted from Ketris & Yudovich (2009) and Dai (2012).

TABLE 2. Correlation strength between parameter
groups.

Parameter Groups Correlation
Strength

Proximate - Major Oxides Strong

Proximate - Valuable Elements Strong

Major Oxides - Valuable Stron

Elements &

Major Oxides - Toxicology

Elements Strong

Proximate - Toxicology

Elements Weak

Valuable Elements - Toxicology

Elements Weak

proximate parameters and toxicology elements,
as well as between valuable and toxicology
elements, suggest limited interaction or co-
dependence. This indicates that toxicology
elements may have independent geochemical
behaviour relative to other parameter groups.
These findings provide critical insights into the
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geochemical processes influencing the studied
material and its potential environmental and in-
dustrial implications.

51.2 PCC

By using the Pearson Correlation Coefficient
(PCC), the relationships between parameters
were identified, providing insights into the as-
sociations among elements. The results of the
analysis are presented in Figure 8.

For this study, Pearson Correlation Coeffi-
cient (R) were interpreted as follows: strong (R
> 0.6), moderate (0.4 < R < 0.6), and weak (R
< 0.4) (Evans, 1996). The results show valuable
elements can be categorized into two main cat-
egories based on their correlation patterns:

* Group X (Ba, Br, Sr): with a strong rela-
tionship with inherent moisture (IM) and
phosphorus (P).

¢ Group Y (Hf, Mo, Ta, Th, W): with a strong
correlation with ash yield and major ox-
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FIGURE 7. Result of Canonical Correlation Analysis (CCA). The analysis illustrates the correlation strength
among parameter groups, showing strong relationships between Proximate-Major Oxides, Proximate-
Valuable Elements, Major Oxides-Valuable Elements, and Major Oxides-Toxicology Elements. In contrast,
weak correlations are observed between Proximate-Toxicology Elements and Valuable Elements-Toxicology
Elements, highlighting the central role of Major Oxides as a key linking factor.

ides such as silicon (Si), aluminum (Al), ti-
tanium (Ti), and potassium (K).

Primary toxicological element identified is zinc
(Zn), which exhibits significant correlations
with volatile matter (VM) and ash, as well as
with Fe; O3 (FeA), magnesium (Mg), and man-
ganese (Mn). No significant correlation was
found between valuable elements and toxico-
logical elements, suggesting that they behave
independently in terms of geochemical interac-
tions.

513 PCA

The results of the multivariate correlation us-
ing Principal Component Analysis (PCA) show
the distribution of samples based on pit lo-
cations, which influences the relationships be-
tween variables. Based on this analysis, the fol-
lowing findings were obtained regarding the re-
lationships between valuable elements and tox-
icology elements, as summarized in Figure 9.
For valuable elements, two main groups were
identified. Group X, consisting of Ba, Br, and Sr,
is associated with IM (Inherent Moisture) and P,
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and is dominated by samples from Blake West
Pit. Group Y, which includes Hf, Mo, Ta, Th,
and W, is associated with ash and elements such
as Si, Al, Ti, and K, and is dominated by sam-
ples from Blake Central Pit, with some samples
also coming from Blake West Pit.

Additionally, samples from Bowen No. 2 Pit
accumulate separately and are associated with
high FC (Fixed Carbon) values, indicating that
the coal from this pit is predominantly clean
coal. An outlier sample was also observed from
Blake West Pit, suggesting greater variability in
the material composition from this location.

Regarding the relationship between valuable
elements and toxicology elements, no signif-
icant correlation was found, indicating that
these two element groups do not strongly influ-
ence each other in the context of this study.

5.2 Clustering analysis (HCA)

Overall, six groups were identified, with one
outlier group based on the data analysis. Each
group exhibits unique characteristics related to
the sample origin and the associated indicators.

Journal of Applied Geology
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FIGURE 8. Result of Pearson Correlation Coefficient (PCC). The figure highlights significant correlations
between multiple variables. Ba, Br, and Sr show positive correlations with inherent moisture (IM) and phos-
phorus (P), while Hf, Mo, Ta, Th, and W are correlated with ash content and major oxides such as Si, Al, Ti,
and K. For toxicological elements, Zn shows strong correlation with volatile matter (VM), ash, and oxides
including Fe203, Mg, and Mn. No significant correlations are observed between valuable and toxicological

elements.

A summary of the group identification results
is presented in Figure 10.

Group A, originating from Blake Central Pit
and Blake West Pit, shows high VM and Ash
values and is associated with elements such
as Hf, Mo, Ta, Th, W, Si, Al, Ti, and K. This
group stands out in terms of material composi-
tion, which suggests potential for industrial or
geotechnological applications.

Group B, found in Blake Central Pit, Blake
West Pit, and Bowen No. 2 Pit, exhibits high IM
and FC values and is associated with elements
such as Ba, Br, Sr, and P. These characteristics
indicate a close relationship with mineral com-
positions that may be important for material ap-
plications.

Group C, also from Blake Central Pit and
Blake West Pit, is associated with valuable ele-
ments such as Hf, Ta, Th, W, and REY, as well as
toxic elements like Ni, Co, Se, and major oxides
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like Ti and K. This group shows high potential
value but also highlights potential toxic impacts
that need to be considered.

Group D, from Blake Central Pit and Blake
West Pit, is associated with toxic elements such
as Co, Ni, Se, and valuable REY elements. This
indicates potential environmental risks that
should be addressed if the material is to be
used.

Group E, consisting of only one sample from
Blake West Pit and Blake Central Pit, shows rel-
atively high IM and FC values and is associated
with toxic elements such as Se, Co, Ni, Zn, and
valuable REY elements. This highlights the po-
tential use of the material but also raises con-
cerns about its environmental and health im-
pacts.

Group F, found in Blake Central Pit, Blake
West Pit, and Bowen No. 2 Pit, shows high IM
and FC values and is associated with the toxic

35



ADDINTAMMA et al.

Valuable Element & Proximate

Valuable Eloment & Proximate

Valuable Elements

PCA - Valusble Element & Proximate

om2 25

637%

ot 38.7%)

Valuable Element & Major Oxide

Valuable Element & Element

Scree ot Valuable Element & Major Oxide PCA - Valuable Element & Major Oxide

65.6% (>50%)

oim2 (16%)

Scree piot BCA - Valuatle Element & Toxicology Element
N

om2 (17.1%

o0 io% i 5o ‘ — 2%

Oimensions oim1 @4.9%)

o3 (155%)

40.8%

o2 17.1%)

PCA- Valuabe Element & Toxicology Element

om3 (159%)
om3 (18.5%)

40.8%

Element & Proximate

Toxicology Element & Major Oxide

Scree plot Toxicology Element & Proximate PCA - Toxicology Element & Proximate
. co
58.5% £50%)

205%

o2 20%)

20%

R
o
o
Lo

Omensions

Toxicology Elements

‘Scree plot Toxicology Element & Major Oxide. PCA - Toxicology Element & Major Oxide

60.6% (>50%)

Dim2 (18.7%)

a5 son

ok o
I e e i

48.2%

Dim1 285%)

PCA - Toxicology Element & Major Oxide. PCA - Toxicoiogy Element & Maor Oxide

o
Y

sl
f.
|

409% 2 = 321%

o @85%) om2(197%

FIGURE 9. Sample distributions based on pit and relationships between variables. The plot reveals a distinct
separation of samples based on their origin. Samples from Bowen No.2 Pit are characterized by high Fixed
Carbon (FC), while Blake Central and Blake West pits are associated with different suites of valuable and
toxic elements. Specifically, Blake Central samples correlate with Hf, Mo, Ta, and Zn, whereas Blake West
samples correlate with Ba, Br, and Sr. The analysis also identifies an outlier from Blake West Pit.

element Cr. This group suggests potential risks
that need to be considered in processing and us-
age.

5.3 Elemental distribution

Bowen coals are enriched in some critical ele-
ments (e.g., Hf, Ta, Th, and W). This association
was first identified by the Pearson Correlation
Coefficient (PCC) and confirmed by the Princi-
pal Component Analysis (PCA), which shows
these elements grouping with Si, Al, Ti, and K,
as reflected in the high Ash content of this coal
group. The high Ash values indicate that these
concentrated elements are contaminants carried
by the mineral matter.

In terms of spatial distribution, as shown in
Figure 11 and Table 3, the distribution of Ash,
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Si, Al, Ti, K, Hf, Ta, Th, and W shows sim-
ilar patterns, increasing toward Blake Central
Pit. Therefore, exploration for the extraction of
these concentrated elements can be focused on
this area.

Additionally, REY is a valuable element con-
centrated in Bowen coals. The analysis further
shows that REY has a significant, though weak,
association with K. The spatial pattern of REY
also shows an increasing concentration toward
the NW or Blake Central Pit.

Zn, which is a toxicology element, is also con-
centrated in Bowen coals. This element is asso-
ciated with FeA, Mn, and Mg, where the VM
and Ash values of this coal group are relatively
high. The spatial distribution of Zn, along with
VM, Ash, FeA, Mn, and Mg, shows similar pat-

Journal of Applied Geology
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FIGURE 10. Hierarchical Cluster Analysis (HCA) dendrogram of the coal samples. The clustering was per-
formed on the standardized geochemical data. The y-axis represents the linkage distance, indicating the
degree of dissimilarity at which samples and clusters are merged. The analysis reveals the presence of six
primary clusters (labeled A through F) and two outlier samples, each delineated by a different color shade

for clarity.

terns, increasing toward the west. For Zn and
major oxides, the spatial distribution points to-
ward Blake West Pit, indicating that coal from
this area has higher concentrations of the toxi-
cology element Zn compared to other pits.

The spatial distribution of IM in Bowen Coals
shows a trend of increasing concentrations to-
ward the south or Blake West Pit, while FC
shows a trend of increasing concentrations to-
ward the southeast or Bowen No. 2 Pit. This is
consistent with previous analysis, which stated
that samples from Bowen No. 2 Pit are clean
coal.

Finally, the distribution of P increases toward
Bowen No. 2 Pit and is associated with valuable
elements Ba, Br, and Sr. However, these three
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elements are not concentrated in the Bowen coal
samples.

These findings suggest that certain areas,
such as Blake Central Pit and Blake West Pit,
have significant potential for the extraction of
valuable elements, while the presence of toxic
elements should also be considered in future ex-
ploration planning.

5.4 Geological controls on elemental distri-
bution

The Valuable Elements group, including Ba,
Br, and Sr, which are found in carbonates, or-
ganic material, sulfates, phosphates, and sili-
cates, shows a strong correlation with the ma-
jor element P. This indicates that the coal for-
mation process involved marine water infiltra-
tion during the transgressive phase (rising sea

37



ADDINTAMMA et al.

Toxic Element

Blake WestPit
0]

| Hich 17,3385

| o 62205

o High : 576001

o 143509

§

Legend:

® Blake Central Pit

® Blake West Pit

® Bowen No. 2 It

#| Direction of Concentration Distribution|
[ Area of High Concentration

Blake West Pit
(o]

| g High: 31528

e o520

FIGURE 11. Spatial distribution maps confirming the result of multivariate analysis for some parameters and
elements. Concentration levels are indicated by color gradient (green: low, red: high). The maps visually
demonstrate the element groupings identified previously. A large suite of variables, including Group Y and
Major Oxides, shows a clear enrichment trend towards Blake Central Pit. Conversely, Group X elements,
Toxic Element, and Inherent Moisture (IM) are enriched towards Blake West Pit. This provides compelling
visual evidence for the distinct geochemical associations operating within the study area.
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TABLE 3. Distribution patterns of elements and their
associations in Bowen Coals.

Distribution
Pattern

Element Association

Hf, Ta, Th, Si, AL Ti, K Increases towar.d
W Blake Central Pit

Increases toward
NW or Blake
Central Pit

Increases toward
Zn FeA, Mn, the west, higher in
Mg Blake West Pit

Increases toward
the south or Blake
West Pit

Increases toward
the southeast or
Bowen No. 2 Pit

Increases toward
Bowen No. 2 Pit,
not concentrated

REY K

FC -

P Ba, Br, Sr

Journal of Applied Geology

levels) in the Early-Late Permian period (Baker
et al., 1993), when organic material from marine
environments became trapped in the coal. This
association highlights the influence of marine
environments on coal formation during this pe-
riod (Table 4).

The Group Y Elements, consisting of Hf, Mo,
Ta, and W, are strongly associated with Ash as
well as major elements such as Si, Al, Ti, and
K. This association suggests that these elements
come from silicate and clay minerals, which
were formed by volcanic activity around the
Bowen Basin during the Early Permian (Field-
ing et al., 1997). The presence of zircon, con-
taining Hf, and silicate minerals confirms that
volcanic activity in the region played a signif-
icant role in the formation of minerals in coal.
Additionally, elements associated with sulfides,
such as Mo and W, are linked to marine fluid in-
filtration during the transgressive phase of the
Early-Late Permian.

The Toxicology Elements group, including
Zn, which is found in minerals like sphalerite,
pyrite, and silicates, is associated with VM,
Ash, and major elements such as Fe, Mg, and
Mn. The presence of pyrite (FeS;) as the pri-
mary source of these elements indicates the in-
fluence of marine fluids that infiltrated the coal
during the transgressive phase of the Early-
Late Permian period. This association strength-
ens the understanding that toxic elements in
coal may originate from marine environments
trapped during coal formation.

6 CONCLUSION

By applying an unsupervised machine learn-
ing algorithm, coal characteristics were success-
fully identified for preliminary exploration ac-
tivities. Although each resulting correlation re-
mains open to interpretation, the validity of the
findings is supported by geological conditions
in the study area that are consistent with the
analytical results. The main conclusions are as
follows:

a. Machine learning has proven effective in
characterizing coal based on its geochem-
ical properties. Variables that exhibit cor-
relation are considered significant in dis-
tinguishing coal from different locations.
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TABLE 4. Occurrence and associations of elements in coal.

Element Groups

Occurrence

Associations

Ba (Barium)

Carbonates, organic
material, sulfates,

Strong correlation with major

Group X o element P
Elements phosphates, silicates - . .
Br (Bromine) Carbo.nate.s,.organic Strong correlation with major
material, silicates element P
Sr (Strontium) Carbopates, organic Strong correlation with major
material, phosphates element P
Hf (Hafnium) Zircon, clay Associated with Ash, Si, Al, Ti, K
Slroup Y Mo (Molybdenum) Silicates, sulfides Associated with Ash, Si, Al, Ti, K
t
ements Ta (Tantalum) Oxides, silicates Associated with Ash, Si, Al, Ti, K
W (Tungsten) Silicates, sulfides Associated with Ash, Si, Al, Ti, K
Toxicology Zn (Zinc) Sphalerite, pyrite, Associated with VM, Ash, Fe, Mg,
Element silicates Mn

Correlated variables tend to show similar
trends in their value increases.

b. Blake Central Pit is characterized by high
ash yield, which is associated with inor-
ganic elements such as Si, Al, Ti, K, as
well as valuable elements such as Hf, Mo,
Ta, Th, W, and REY. This pit has signifi-
cant potential for valuable element explo-
ration, with a directional trend towards the
N-NW.

c. Blake West Pit is characterized by high in-
herent moisture, which correlates with the
presence of P and valuable elements such
as Ba, Br, and Sr. However, it also indi-
cates a potential distribution of toxicology
elements with a directional trend towards
S-SW.

d. Bowen No. 2 Pit has high fixed carbon
and low ash yield, indicating a cleaner coal
quality compared to the other pits.

These findings highlight the effectiveness of un-
supervised machine learning in identifying coal
characteristics and their association in valuable
and toxicology elements, supporting targeted
exploration strategies in Bowen Basin.
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