Aspirin and Clopidogrel Resistance in Coronary Artery Disease

Fera Hidayati*, Bambang Irawan, Hasanah Mumpuni

Department of Cardiology and Vascular Medicine Faculty of Medicine Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia

*Corresponding author:

Fera Hidayati, MD, - email: fera.hidayati@gmail.com

Department of Cardiology and Vascular Medicine Faculty of Medicine Universitas Gadjah Mada – Dr. Sardjito Hospital, Jalan Farmako Sekip Utara Yogyakarta, 55281, Indonesia.

Manuscript submitted: May 6, 2017; Revised and accepted for publication: September 22, 2017

ABSTRACT

Dual antiplatelet therapy has been proven effective to reduce recurrent cardiovascular eventin patients with coronary artery disease and recommended as standard therapy for acute coronary syndrome and patients who underwent percutaneous coronary intervention. The adverse clinical occurrence in patients who taking aspirin and clopidogrel associates with antiplatelet non responsiveness, in addition to repetitive bleeding incident in such a way that platelet reactivity and genetic polymorphisms investigation rises intense interest. Resistance to antiplatelet or antiplatelet non responsiveness means a phenomenon in which antiplatelet drug fails to deliver pharmacological target and it is determined by platelet function measurement. Recent laboratory methods have been developed to diagnose antiplatelet resistance, but none of them was considered as standard tool since its wide inter-individual variability and poor correlation between them. The mechanism of antiplatelet resistance is not fully understood, multifactorial, involving pharmaco dynamic and pharmacokinetic of the drugs. This review is aimed to comprehend the antiplatelet resistance mechanism and provide crucial information on managing patients who take dual antiplatelet treatment with adverse clinical events.

Keywords: antiplatelet resistance; mechanism; laboratory measurement; management

INTISARI

Terapi antiplatelet ganda telah terbukti efektif untuk menurunkan kejadian kardiovaskular berulang pada pasien dengan penyakit arteri coroner dan direkomendasikan sebagai terapi standar untuk sindroma coroner akut dan pasien yang menjalani intervensi coroner perkutan. Kejadian klinik buruk pada pasien yang mendapatkan aspirin dan klopidogrel berhubungan dengan sifat non reponsif terhadap antiplatelet, selain adanya perdarahan berulang yang menyebabkan pengkajian tentang reaktivitas platelet dan polimorfis megenetik menjadi meningkat. Resistensi terhadap antiplatelet atau nonresponsive terhadap antiplatelet berarti suatu fenomena dimana obat antiplatelet tidak mampu mencapai target farmakologi dan hal ini ditentukan oleh pengukuran fungsi platelet. Dewasa ini, metode pengukuran laboratorium telah dikembangkan untuk mendiagnosis resistensi antiplatelet, namun belum ada yang diterima alat-alat tersebut. Mekanisme resistensi antiplatelet tidak sepenuhnya dimengerti, multifaktor, melibatkan farmako dinamik dan farmako kinetic dari obat. Tinjauan pustaka ini bertujuan untuk mengetahui mekanisme resistensi antiplatelet dan memberikan informasi penting dalam tata laksana pasien yang mendapatkan terapi antiplatelet ganda dan mengalami kejadian klinik buruk.

INTRODUCTION

Antiplatelet drugs are widely used to reduce thrombosis process in atherosclerosis patients. There are three kinds of antiplatelet drug which have been proven their benefit to coronary artery disease (CAD), i.e. (i)cyclooxygenase (COX)-1 inhibitor such as aspirin, (ii) adenosine 5'-diphosphate (ADP) antagonist receptor such as thienopyridine (ticlopidin, clopidogrel, prasugrel), and (iii) GPIIb/IIIa antagonist such as abciximab, eptifibatide,and tirofiban. Aspirin and thienopyridinework selectively on inhibiting platelet activation and subsequent aggregation; aspirin in thromboxan A2 production through irreversibly COX-1 inhibition, while thienopyridinedisturbed ADP pathway through thrombocyte ADP receptor blockade. The prevention of platelet's clumping result in reduction of atherothrombotic event patient with CAD.^{1,2,3}

In addition to their advantages, researchers reported significant antiplatelet debilitiessuch as low responsiveness (resistance), lack of platelet inhibition ability, variation of individual response, and lengthen time to recovery. Residual platelet reactivity is correlated with increased risk of major cardiovascular events.⁴ Chirumamilla et al. (2012) investigated the relationship of platelet reactivity and atherosclerotic burden in patients treated with percutaneous coronary intervention (PCI). That study suggested that an increased platelet reactivity on antiplatelet treatment was correlated with higher burden of CAD and plague calcification.⁵ Antiplatelet resistance is also associated with repetitive bleeding events in CAD patients.6

THE INCIDENCE OF ANTIPLATELET RESISTANCE

The prevalence of antiplatelet resistance in different population with several methods of laboratory tests is various. Numerous studies report the prevalence of aspirin and clopidogrel resistance is about 5-60%, as shown on table 1 and 2. The results show a wide variation and poor consistency among those researches. Therefore, it is needed to evolve more studies to investigate the ideal laboratory test which can identify antiplatelet resistance and the patients who at risk of future adverse cardiovascular events.⁷

MECHANISM OF ACTION: ASPIRIN AND CLOPIDOGREL

Aspirin causes permanent inhibition of COX-1 by acetylating a serine residue at position 530 with the result that prevent the changes of arachidonic acid (AA) to the unstable prostaglandin (PG) which is converted to thromboxan A2 (TXA2), a platelet agonisand vasoconstrictor. Clopidogrel is an inactive prodrug derived thienopyridine, converted into active form by hepatic P450 cytochrom enzyme, acts byirreversible antagonism of P2Y₁₂ adenosine diphosphate (ADP) receptor. Those dual antiplatelets therapy significantly decrease thrombotic events. The action's mechanism of aspirin and clopidogrel are shown on figure 1.⁸

DEFINITION OF ANTIPLATELET RESISTANCE

European Society of Cardiology (ESC) Working Group on Thrombosis states that definition of antiplatelet resistance remains unclear since the standardized platelet function test has not been established to define whether it is responders or non-responders (resistance). The terminology of antiplatelet resistance consists of two features: clinical and laboratory. A patient who receives antiplatelet drug routinely but still experiences in cardiovascular event implied as clinical resistance. While laboratory resistance is defined when antiplatelet drug does not work properly to block platelet activation on in vitroexamination.⁹

Inter individual variability concept upon any agent may be described as follows, different effect with varied intensity on different subject regardless the same agent's plasma concentration. Absorbtion, distribution, metabolism (biotransformation) and elimination, known as pharmacokinetics, each contributes on plasma concentration variation and or active metabolites in any individual who receives the same dose. Biomechanical and physiological effects of the agent and its action mechanism, created complex relations with the given concentration and the clinical effect shown, called pharmacodynamics. Both pharmacokinetics

Study	n	Type of subjects	Aspirin dose	Platelet function test	Prevalence of resistance (%)
Gum et al⁵	325	Stable CAD	325 mg	ADP and AA induced optical aggregation	5.2
Mueller et al ³⁸	100	PAD	100 mg	Corrected whole blood aggregometry	60
Grotemeyer et al35	180	CVA	1500 mg	Platelet reactivity	33
Chen et al24	151	Elective PCI	80-325 mg	RPFA	19
Andersen et al23	202	Post MI	160 mg Aspirin vs. 75 mg Apirin plus warfarin	PFA-100	35% in patients taking aspirin only, vs. 40% in patients taking aspirin and warfarin
Macchi et al21	98	Stable CAD	160 mg	PFA-100	29%
Helgason et al ^{s1}	306	CVA	300-325 mg	ADP induced platelet aggregation	25%
Hobikoglu et al ²²	204	ACS: 104 Stable CAD: 100	80–300 mg	PFA-100	40% in ACS 27% in Stable CAD
Grundmann et al ⁵²	53	CVA/TIA in prev 3 days 35	100 mg	PFA-100	34% in symptomatic 0% in asymptomatic patients
Alberts et al53	129	CVA	81 mg vs. 325 mg	PFA-100	37% overall, with 56% in patients on 81 mg vs. 28% in those on 325 mg aspirin.

Table 1. Prevalence of aspirin resistance based on laboratory assay⁷

Source of table: Saraf et al. (2009)7

Table 2. Prevalence of clopidogrel resistance based on laboratory assay⁷

Study	n	Condition studied	Loading dose clopidogrel	Maintenance dose clopidogrel	Platelet function test	Prevalence of resistance
Gurbel et al54	92	PCI	300 mg	75 mg	LTA	31%-35%
Angiolillo et al55	52	Diabetes	300 mg	75 mg	LTA and Flow cytometry	38% in DM, 8% in non-DM
Angiolillo et al56	48	PCI	300 mg	75 mg	LTA	44%
Lepantalo et al ⁵⁷	50	PCI	300 mg	75 mg	LTA and PFA 100	40%
Jaremo et al ⁵⁸	18	PCI	300 mg	75 mg	LTA	28%
Lev El et al59	150	PCI	300 mg	-	LTA	24%
Mobely et al60	50	PCI	300 mg	75 mg	LTA	30%
Muller et al ⁶¹	115	PCI	600 mg	75 mg	LTA	5%-11%
Barragan et al ⁶²	48	ISR ¹⁶ vs no ISR ³²		Clop 75 mg B.I.D. vs. Ticlopidine 250 mg B.I.D.	Flow cytometry	63% (ISR) vs. 40% (no ISR)
Bounamici et al ³²	804	ISR	600 mg	75 mg	ADP induced platelet aggregation	13%
Ajzenberg et al63	32	ISR ¹⁰ vs. no ISR ²²	300 mg	75 mg	Shear induced platelet aggregation (SIPA)	41% (cases) vs. 18% (controls) at shear rate of 200/s 57% (cases) vs. 23% (controls) at shear rate of 4000/s
Matetzky et al29	60	STEMI	300 mg	75 mg	LTA	25%
Dziewierz et al64	31	CAD	300 mg	-	LTA	23%

Table 3. Summary of laboratory tests reporting clopidogrel resistance.

Source of table: Saraf et al. (2009)7

Hidayati et al., 2017

and pharmacodynamics work as the basis to understand successful rate of therapy and its side effect (figure 2).¹⁰

MECHANISM OF ANTIPLATELET RESISTANCE

When coronary artery plaques ruptur, thrombogenic substrate is released into blood circulation and result in the activation and aggregation of platelet. On PCI procedures (especially when balloon or stents are deployed), patients are at high risk of thrombotic response due to vascular injury. Aspirin and clopidogrel are proven to reduce in stent thrombosis or restenosis after drug-eluting stenting. However, antiplatelet non-responsiveness still occurs in some patients on standard dual antiplatelet therapy. The mechanism of antiplatelet resistance is not fully understood.¹¹ High individual response variability on antiplatelets agents involve many factors, such as non-compliance and low absorption.⁴ Other mechanisms responsible to antiplatelet resistance include lowering bioavailability, genetic variations, increased platelet turnover, activation of platelet from other pathway, and individual variation (table 3).⁷

MECHANISM OF ASPIRIN RESISTANCE

Pharmacodynamics resistance of aspirin caused by change of aspirin target enzyme, COX-1, and increasing the dosein vitro did not significantly alter thromboxan-A2 production. This phenomenon refers to

Figure 1.Antiplatelet site of action *Source: Fox et al.*(2013)⁸

laboratory resistance which aspirin does not block properly with in vitro platelet reactivity. Pharmacokinetics resistance was a condition caused by limited supply of active agents on plasma that caused low therapeutics response (such as low dose or absorption change) that improved significantly by adding aspirin in vitro dosage.¹²

In the clinical practice, nonadherence is probably the most frequent cause of aspirin nonresponsiveness. The lack of aspirin effect is due to the patient not taking the drug regularly or prematurely discontinue it. Aspirin discontinuation may not improve efficacy, but may raise bleeding risk and correlated with Acta Cardiologia Indonesiana (Vol 3 No. 1): 33-44

threefold increase in adverse cardiovascular events.^{12,13} Enteric coated aspirin is considered as a culprit of lower effectivity especially on obese patients because its tendency of low bioavaibility and bad absorption due to highpH condition in the small intestine.^{12,13,14,15} The reducing bioavailibility of aspirin by gastrointestinal mucosal esterases may also occur when it takes together with proton pump inhibitor.¹² Competition with other NSAIDs connected with Ser 530 enzim COX-1, in advanced causing irreversible acethylation and enzyme inactivation. It is caused by location of binding site both aspirin and NSAIDs are within a hydrophobic channel in COX enzyme.^{13,14.}

Figure 2. Pharmacokinetics and pharmacodynacis which influenced drug clinical outcome. This figure is modified from Rocca and Petrucci (2012)^{10.}

Bioavailabilitasdecrement	 Incompliance Inadequate dosage Low absorption (<i>enteric coated</i> aspirin) Increased metabolism Other drug interaction (involving P-450 CYP3A4 cytochrome system for conversion onto active metabolyte) Other drug interaction (NSAIDs)
Genetics Variations	 Gene COX1 mutation Gene COX1, glycoprotein(GP) la/lla, GP IIIa, P2Y1 or P2Y12 polymorphism Gene P-450 CYP3A polymorphism (for clopidogreland any other prodrug that metabolised with the system) Platelet glycoprotein receptor polymorphism Platelets and endothel cell's COX 2 overexpression
Enhanced platelet turnover	 Increment of bone marrow's platelet production Unexposed aspirin and clopidogrel new platelets (case example, tranfusion) Platelet activation induced by cigars. Platelet activation induced by erythrocyte increment.
Platelet activation from alternative pathway	 TXA2 synthesis induced by cytokines, oxidative stress or nucleated cells Platelet activation induced by cathecolamine caused by exaggerated physical or mental stress. High incidencee of shear stress, collagen, thrombin and other platelet activation pathway.
Individual variation	 Diabetes or insulinresistance Hypercholesterolaemia Hypertension Old age Obesity Sex

Table 3 .Underlying mechanisms of antiplatelet resistance⁷

Source of table: Saraf et al. (2009)7

In pharmacodynamics perspective, production of residual thromboxan by COX-1 and COX-2 is thought to be responsible for aspirin resistance. Furthermore, enhanced platelet turnover (primary or secondary) or high interaction between platelet and vessel wall (such as diabetes) may cause more relevant to COX-1 activity than aspirin effectiveness. COX-2 overexpressionson platelet, megakaryosites and its upregulations on monocytes, macrophages and vascular endothel cells (as seen in diabetes, hyperlipidemia, smoking, and heart failure) may cause biosynthesis thromboxan elongation, which later could contribute to aspirin resistance. This conditions may be caused by overproduction of prostaglandin-like compound which relate with oxygen free-radicals nonenzymatic

acidarachidonic lipid peroxidation.¹² Genetic factors also correlate with aspirin resistance. Its includes genetic polymorphisms of thromboxan synthesis, P1A1/A2 (encoded gene of platelet membrane's GPIIIa), COX-1 and platelet collagen-receptor's GPIa/IIa, and polymorphisms which cause overexpression of COX-2 mRNA in platelets and endothelial cells.¹²

MECHANISM OF CLOPIDOGREL RESISTANCE

There are multiple etiologies which contribute the nonresponsiveness to clopidogrel. Its proposed mechanisms include bioavailability, cellular factors, genetic polymorphism, and other factors such as body mass index, diabetes, hypercholesterolemia, and smoking (table 4).^{11,13} The lack of clopidogrelbio availibility

Bioavailability	Nonadherence patient
	 Drug interaction (lipophilic statins, omeprazole)
	Poor absorption
	Underdosing
Cellular factor	Enhanced platelet turnover
	 Increased platelet sensitivity to ADP and collagen
	Reduced activity CYP3A
	Increased exposure ADP
	 Upregulation of P2Y12 pathways
	 Upregulation of P2Y-independent pathways: collagen,
	thrombin, epinephrin, TXA2
Genetic factor	 Polymorphisms of P450(CYP2C19681G>A[*2,*3,*4, and *51
	 Polymorphisms of P2V1
	Polymorphism of P2V12
	Polymorphism GPIa
	Polymorphism GP IIIa
Other factors	Increased body mass index
	Dishetes
	• Diabetes
	Hiperinsulinemia
	Hypercholesterolemia
	Smoking

Table 4. Factors influence variability of clopidogrel response⁷

Source of table: Saraf et al. (2009)7

commonly due to non adherence patients, underdosing, and lowering prodrug intestinal absorption. Clopidogrel may interact with lipophilic statin, calcium-channel blocker, and omeprazole result in changes in hepatic cytochrome P450 isoenzymes activity and responsible on interfering clopidogrel action.¹³ Interaction with benzodiazepine and selective serotonin reuptake inhibitor (SSRI) are also able to decrease clopidogrel biovailability.¹⁷

The genetic factors which affect the clopidogrel response are polymorphisms of cytochrom P450, variations in P2Y₁₂ receptor density, andcarriers of disabled CYP2C19681G>A*2.¹³ Hulot et al (2006) conducted pharmacogenetic study to figure out the mechanism of clopidogrel hyporesponsiveness which related to genetic variation.

They concluded that CYP2C19*2 lossof-function allele was correlated with poor antiplatelet responsiveness of clopidogrel in young healthy male volunteers. The capability of clopidogrel to impede ADP-induced platelet aggregation demonstrates a wide individual variabiality.^{18,19} Different platelet response to ADP which not increased by clopidogrel administration is also accounted as individual variability.²⁰

LABORATORY MEASUREMENT OF ANTIPLATELET RESISTANCE

Guidelines of myocardial revascularization (2014) published by ESC states that platelet function test or genetics is considered on high risk conditions such as stent thrombosis history, incompliance, resistance suspicion, and high risk bleeding (class recommendation IIb), though routine examination before and after stent implantation is not recommended.²¹

In vivo (bleeding time) and in vitro (light transmission aggregometry/LTA, PFA-100 system, ultegrarapidplatelet function assay-ASA) platelet function are not always reflecting drug ability to reach its pharmacology target.²² Various methods is developed to obtain the most appropriate measurement of platelet function in clinical practice.²³

Method	Sample	Method application	Method principle	
Bleeding time	Native WB	Screening test (obsolete)	In vivo measurement of bleeding block	
Tests based on platelet aggre	egation			
ight transmission platelet Citrated PRP		Screening test for bleeding tendency	Photo-optical measurement of light	
aggregation (LTA)		Diagnostic for platelet defects	transmission increase in relation	
		Monitoring antiplatelet treatment effect	to agonist-induced platelet aggregation	
Impedance platelet aggregation	Citrated WB	Screening test for bleeding tendency	Measurement of electrical impedance	
		Diagnostic for platelet defects	increase in relation to agonist-induced	
		Monitoring antiplatelet treatment effect	platelet aggregation	
Lumiaggregometry	Citrated WB	Detection of storage/release disorders	LTA or WB aggregometry combined with luminescence	
Plateletworks	Citrated WB	Monitoring of the platelet response	Platelet counting pre- and postactivation	
		to antiplatelet agents	in whole blood	
Tests based on platelet adhe	sion under shear	stress		
PFA-100; Innovance PFA-200	Citrated WB	Assessment of bleeding risk and drug effects	Time evaluation of high shear WB flow	
		Searching severe platelet dysfunctions,	blocked by platelet plug into a hole	
		revealing of VWD	in activated surface	
Impact; Cone and Plate(let) Analyzer	Citrated WB	Screening of primary hemostasis	Shear-induced platelet adhesion-aggregation upon specific surface	
Global thrombosis test (GTT)	Native WB	Evaluation of platelet function	Measurement of time cessation of WB	
		and thrombolysis	flow by high shear-dependent platelet plug formation	
Platelet function methods co	mbined with vise	coelastic test		
TEG/platelet mapping system	Citrated WB	Assessment of global hemostasis plus	Evaluation of rate of clot formation	
		monitoring antiplatelet treatments effect	based on low shear-induced and agonist addition	
ROTEM platelet	Citrated WB	Assessment of global hemostasis plus	Measurement of electrical impedance	
		diagnostic of platelet defects plus	increase in relation to agonist-induced	
		monitoring antiplatelet treatments effect	platelet aggregation	
Platelet analysis based on flo	w cytometry			
Flow cytometry	Citrated WB,	Cell counting, detection platelet activation	Engineering laser-based detection	
	PRP, W-Plt	by extent of expression of surface and/or	of suspending fluorescent label platelets	
		cytoplasmic biomarkers	in a flowing solution	
Evaluation of Thromboxane	metabolites			
Radio- or enzyme-linked Serum, urine,		Measurement of TxA2 metabolites	Ligand-binding assays	
immune assays citrated Pls		(and Beta-TG, PF4, soluble P-selectine)*		

Table 5. Various methodes of platelet function assessment ²³

Abbreviations: Beta-TG, beta-thromboglobulin; Pls, plasma; PRP, platelet-rich-plasma; ROTEM, rotational thromboelastometry; TEG, thromboelastography; TxA2, thromboxane A2; WB, whole blood; W-Plt, washed platelets; VWD, Von Willebrand disease. Source of table: Saraf et al. (2009)⁷

The gold standard of antiplatelet resistanceassay is LTA or turbidometricaggregometry, which based on platelet aggregation measurement between the agent and its agonis, as AA and ADP for aspirin, or ADP only for clopidogrel, prasugrel, or ticagrelor. Recently, Verify Now[®] and vasodilator stimulated phosphoprotein (VASP) phosphorylationassay is considered as more practically for clinical interest, due to LTAhas a low reproducibility, interindividual variability on ADP induced platelets aggregation baseline, and the logistical condition make a difficulty to use in daily practice.²⁴

Ultegra Rapid Platelet Function Assay (RPFA)-Verify Now[®] is a simple, rapid (less than 5 minutes), user-friendly, high reproducibility, and point-of-care assessment which use AA or propylgallate to measure aspirin effects and ADP

Acta Cardiologia Indonesiana (Vol 3 No. 1): 33-44

to find out the effect of P2Y₁₂ inhibitor.²⁴ Platelet function is assessed from the ability of activated platelet to bind fibrinogen which is detected by turbidimetric-based optical. Using light source, blood specimens is added to mixing chamber (cartridge) which contains fibrinogen-coated beads and a specific agonist. Clotting of functional platelets will raise the light transmission and the amount of fibrinogen binding by the activated platelets is determined. Three different assays are available to verify the inhibition of platelet function by anti-platelet drugs (GPIIb/IIIa inhibitor, aspirin, and clopidogrel). The result of aspirin and P2Y12 test is reported as Aspirin Reaction Unit (ARU) and P2Y12 Reaction Unit (PRU), respectively.23,25 The cutt-off value of aspirin and clopidogrel resistance are ≥ 550 ARU and ≥ 240 PRU.6

MANAGEMENT OF ANTIPLATELET RESISTANCE

Experts recommend three strategies to overcome antiplatelet resistance: increasing the dosage, adding other agent (such as gylcoprotein IIb/IIIa inhibitor, cilostazol), or substituting with more potent agent (such as prasugrel, ticagrelor).⁶ Alegria-Barrero et al (2010) convey an algorithm on overcoming antiplatelet resistance in patient undergo PCI (figure 3). After PCI procedure, patient receives dual antiplatelet drug (aspirin 100 mg and clopidogrel 75 mg). When aspirin or clopidogrel resistance is indicated, increase aspirin dosage up to 325 mg or clopidogrel 150 mg, respectively. It may also be switched with trifusal for aspirin resistance or prasugrel/ticagrelor/prasugrel for clopidogrel resistance.26

Neubaueret al. (2011) investigate 504 patients following PCI in single center study whoreceived 500 mg aspirin (loading dose), continued with 100 mg per 24 hour and 600 mg clopidogrel (loading dose), continued with 75 mg per 24 hour. All participants undergo whole blood aggregometry examination > 48 hours

Figure 3. Algorithm of antiplatelet resistance mangement. Reprinted with permission from Alegria-Barrero

(2010)²⁶

(no more than 72 hour) after stent implantation. The researcher applies the tailored algorithm on managing antiplatelet resistance which called "The Bochum clopidogrel and aspirin plan (BOCLA-Plan)". Study result identified 30,8% clopidogrel low-responders (CLR) and 19,4% aspirin low-responders (ALR). Aspirin dosage adjustment gradually at 300 mg/day, then 500 mg/day, resulted on 5,4% residual ALR. This means aspirin maintenance dose modification is adequately success for ALR. Meanwhile, 69%CLR patients are successfully treated with increased dosage of clopidogrel (150 mg/24 hour). The remaining 12.7% CLR who is contraindicated with prasugrel or inavailability of prasugrel, show adequate response with ticlopidine.Other CLR patients given prasugrel has not shown residual properties yet. This algorithm implementation decreasing the CLR prevalence by 86.6%.27

The former research, Aspirin Induced Platelet Effect (ASPECT) research on stable coronary artery disease, showed ALR decrement by increasing aspirin up to 325 mg/24 hour.²⁸ Practice guideline for PCI from ACC/AHA/SCAI (2005) states that patients in whom subacute thrombosis may be fatal (such as unprotected left main, bifurcating left main, or last patent coronary vessels), platelet aggregation assessment may be considered and if it reveales inhibition of platelet agregation < 50%, clopidogrel dosage should be increased up to 150 mg/24 hour (class IIb, LoE : C).²⁹

Aspirin resistance might be suppressed by minimalizing thromboxan production and activity or any other platelet activation pathway. Stop smoking, body weight reduction and routine physical training are mentioned to increase platelet function. Other clinical condition as hyperlipidemia, diabetes mellitus, hypertension, cardiac failure, and inflammation disturbances also disrupt aspirin activity. Incompliance, avoidance of agents interfere with aspirin absorption as proton pump inhibitor and enteric coated aspirin, agent decrease pharmacokinetics as NSAID, has its benefit on reducing resistance.¹²

Higher platelet exchange increase the dose needed for aspirin, as American Diabetes

Association recommended. Dose 75-162 mg/ 24 hour on diabetic patient with cardiovascular risk increased (as primary prevention) such as male > 50 yo, female > 60 yo with minimal 1 risk factor of atherosclerotics, or secondary prevention for those already diagnosed with atherosclerotic vascular disease.²⁴ The proposed algorithm on handling aspirin resistance is shown on figure 4.

CONCLUSION

Resistance to antiplatelet means a phenomenon in which antiplatelet drug fail to deliver pharmacological target and it is determined by platelet function measurement. Antiplatelet resistance is associated with recurrent adverse cardiovascular events, higher burden of CAD, plaque calcification, and repetitive bleedingoccurences. Studies develop various laboratory methods to recognize antiplatelet resistance, but none of them is considered as standard tool since its wide inter-individual variability and poor correlation between them. The published guidelines does not recommend to check the platelet function test routinely in periprocedural of PCI, unless the patient on high risk situation in

Figure 4. Proposed algorithm of managing aspirin resistance on coronary artery disease.

whom subacute thrombosis may be fatal.

The mechanism of antiplatelet resistance is involving pharmacodynamic and pharmacokinetic of the drugs, include incompliance, low absorption, high individual response variability, genetic variations, increased platelet turnover, and activation of platelet from other pathway. Experts recommend tailored strategies to overcome antiplatelet resistance: increasing the dosage, adding (such as gylcoproteinIIb/IIIa inhibitor, cilostazol) or substituting with other agent (such as trifusal for aspirin resistance; prasugrel or ticagrelor for clopidogrel resistance), and control the other possible modifiable mechanisms.

REFERENCES

- Patrono C. 2003. Aspirin resistance: definition, mechanisms and clinical readouts. J Thromb Haemost, 1(8):1710-1713.
- 2. Hankey G.J., Eikelboom J.W. 2006. Aspirin resistance. Lancet, 367 (9510):606-617.
- Cattaneo M. 2007. Resistance to antiplatelet drugs: molecular mechanisms and laboratory detection. J ThrombHaemost, 5, Suppl. 1: 230-237.
- PriscoD., Marcucci R. 2009. Antiplatelet drug's resistance. The Open Atherosclerosis & Thrombosis Journal, 2;24-28.
- Chirumamilla A.P., Maehara A., Mintz G.S., Mehran R., Kanwal S., Weiszet al.2012. High platelet reactivity on clopidogrel therapy correlates with increased coronary atherosclerosis and calcification. J Am CollCardiol, 5(5):540-549.
- Yu L.H., Kim M.H., Zhang H.Z., Park J.S., Park T.H., Kim Y.D., et al. 2012. Impact of platelet function test on platelet responsiveness and clinical outcome after coronary stent implantation: platelet responsiveness and clinical outcome. Korean Circ J, 42(6):382-389.
- Saraf S., Bensalha I., Gorog D.A. 2009. Antiplatelet resistance-does it exist and how

to measure it? Clin Med Cardiol, 3(3):77-91.

- Fox K.A.A., White H.D., Gersh B.J., Opie L.H. 2013. Antithrombotic agents: platelet inhibitors, acute anticoagulants, fibrinolytics, and chronic anticoagulants, Chapter 9 In Drugs forThe Heart 8th Edition. Philadelphia: Elsevier Saunders.
- Kuliczkowski W., Witkowski A., Polonski L., Watala C., Filipiak K.,Budaj A., et al. 2009. Interindividual variability in the response to oral antiplateletdrugs: a position paper of the Working Group on antiplateletdrugs resistance. Eur Heart J, 30(4);426-435.
- 10. Rocca B., Petrucci G. 2012. Variability in the responsiveness to low-dose aspirin: pharmacological and disease-related mechanisms. Thrombosis, 376721;1-11.
- Ogawa H., Hokimoto S., Kaikita K., Yamamoto., Chitose T., Ono T., et al. (2011) Current status and prospects of antiplatelet therapy in percutaneous coronary intervention in Japan : Focus on adenosine diphosphate receptor inhibitors. JCardiol, 58(1):6-17.
- Kasmeridis C., Apostolakis S., Lip G.H.Y. 2013. Aspirin and aspirin resistance in coronary artery disease. Current Opinion in Pharmacology, 13:242-250.
- Sweeny J.M., Gorog D.A., Fuster V. 2009. Antiplatelet drug 'resistance'. Part 1: mechanism and clinical measurements. Nat Rev Cardiol, 6:273-282.
- Cox D., Maree A.O., Dooley M., Conroy R., Byrne M.F., Fitzgerald D.J. 2006. Effects of enteric coating on antiplatelet activity of lowdose aspirin in healthy volunteers. Stroke, 37(8):2153-2158.
- Maree A.O., Curtin R.J., Dooley M., Conroy R.M., Crean P., Cox D., et al. 2005. Platelet response to low-dose enteric-coated aspirin in patients with stable cardiovascular disease. J Am Coll Cardiol, 46(7):1258-1263.
- 16. Catella-Lawson F., Reilly M.P., Kapoor S.C., Cucchiara A.J., DeMarco S., Tournier B., et

al. 2001. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med, 345(25):1809-1817.

- Feher G., Koltai K., Alkonyi B., Papp E., Keszthelyi Z., Kesmarky G., et al. 2006. Clopidogrel resistance: role of body mass and concomitant medications. Int J Cardiol, 120(2):188-192.
- Hulot J.S, Bura A., Villard E., Azizi M., Remones V., Goyenvalle C., et al. 2006. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood, 108 (7):2244-2247.
- Angiolillo D.J., Fernandez-Ortiz A., Bernardo E., Ramirez C., Cavallari U., Trabetti E., et al. 2005. Lack of association between the P2Y₁₂ receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease.Thromb Res, 116(6):491-497.
- Michelson A.D., Linden M.D., Furman M.I., Li Y., Barnard M.R, Fox M.L., et al. 2007. Evidence that pre existent variability in platelet response to ADP accounts for "clopidogrel resistance" J ThrombHaemost, 5(1):75–81.
- Windecker S., Kolh P., Alfonso F., Collet J.P., Cremer J., Falk V., et al. 2014. 2014 ESC/EACTS Guidelines on myocardial revascularisation. European Heart Journal, 68-70.
- 22. Cattaneo M. (2004) Aspirin and clopidogrel: efficacy, safety and the issue of drug resistance. Arterioscler Thromb Vasc Biol,24: 1980-1987.
- Paniccia R., Priora R., Liotta A.A., Abbate R. 2015. Platelet function tests: a comparative review. Vascular Health and Risk Management, 11;133–148.
- 24. Kumbhani D.J., Marso S.P., Alvarez C.A., McGuire D.K. 2015. State-of-the-Art:Hypo-

responsiveness to oral antiplatelet therapy in patients with type 2 diabetes mellitus. CurrCardiovascRisk Rep, 9(4):1-19.

- 25. Stone M.E. 2009. Point-of-Care Platelet Function Testing with the Verify Now® and Plateletworks™Platforms.www.scahq. org/sca3/events/2009/annual/syllabus/ workshops/subs/wkshp6pdfs/Platelet%20 Works%20and%20Verif43.doc.pdf.
- 26. Alegria-Barrero E. 2010. Platelet reactivity tests: why they are useful and which ones to use. www.escardio.org/Guidelines-&-Education/Journals-and-publications/ESCjournals-family/E-journal-of-Cardiology-Practice/Volume-8/Platelet-reactivity-testswhy-they-are-useful-and-which-ones-touse.
- Neubauer H., Kaiser A.F.C., Endres H.G., Krüger J.C., Engelhardt A., Lask S., et al.
 2011. Tailored antiplatelet therapy can over comeclopidogrel and aspirin resistance
 The Bochum C Lopidogrel and Aspirin Plan (BOCLA-Plan) toimprove antiplatelet therapy. BMC Medicine, 12(9):3.
- Gurbel P.A., Bliden K.P., DiChiara J., Newcomer J., Weng W., Neerchal N.K.,et al. 2007. Evaluation of doserelated effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation, 115(25):3156-3164.
- 29. Smith S.C. Jr, Feldman T.E., Hirshfeld J.W.Jr, Jacobs A.K., Kern M.J., King S.B., al. 2006. ACC/AHA/SCAI 2005Guideline Update for Percutaneous Coronary Intervention–summary article: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation, 113(1):156-175.